Skip to main content
Log in

The Actual Lead Toxicity for Scots Pine Seedlings in Hydroculture

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The toxic effects of lead (10 and 50 μM) in the nutrient solution and distilled water on Scots pine (Pinus sylvestris L.) seedlings were studied. It was shown that due to the rapid lead immobilization by the components of the nutrient solution, its measured concentrations were tens of times lower than the nominal ones already after 15 minutes after addition. The pronounced toxic Pb effects were manifested only on seedlings exposed to lead in distilled water, since the availability and stability of lead in such conditions were significantly higher and lasted longer than in the nutrient solution. The most pronounced toxic Pb effect was manifested in a decrease in the physiological activity of root cells and an increase in their oxidative status due to the accumulation of MDA and 4-hydroxyalkenals. Against this background, a decrease in the content of gallic acid equivalents, catechins and proanthocyanidins was noted in the roots of seedlings, while the contents of catechins and proanthocyanidins in the needles doubled. Lead exposure was also accompanied by large-scale imbalances in the contents of mineral nutrients (magnesium, calcium, potassium, iron, zinc and copper) in seedlings. It has been shown that Scots pine seedlings accumulate about 0.15 μmol/g of Pb in needles without showing any visible damage, with 0.8 μM of available lead in the nutrient solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hou, D., O’Connor, D., Igalavithana, A.D., Alessi, D.S., Luo, J., Tsang, D.C.W., Sparks, D.L., Yamauchi, Y., Rinklebe, J., and Ok, Y.S., Metal contamination and bioremediation of agricultural soils for food safety and sustainability, Nat. Rev. Earth Environ., 2020, vol. 1, p. 366.

    Article  Google Scholar 

  2. Kumar, A., Cabral-Pinto, M.M.S., Chaturvedi, A.K., Shabnam, A.A., Subrahmanyam, G., Mondal, R., Gupta, D.K., Malyan, S.K., Kumar, S.S., Khan, S.A., and Yadav, K.K., Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches, Int. J. Environ. Res. Publ. Health, 2020, vol. 177, p. 2179.

    Article  Google Scholar 

  3. Kushwaha, A., Hans, N., Kumar, S., and Rani, R., A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies, Ecotoxicol. Environ. Saf., 2018, vol. 147, p. 1035.

    Article  CAS  Google Scholar 

  4. Levin, R., Vieira, C.L.Z., Rosenbaum, M.H., Bischoff, K., Mordarski, D.C., and Brown, M.J., The urban lead (Pb) burden in humans, animals and the natural environment, Environ. Res., 2021, vol. 193, p. 110377.

    Article  CAS  Google Scholar 

  5. Hettiarachchi, G.M. and Pierzynski, G.M., Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review, Environ. Prog., 2004, vol. 23, p. 78.

    Article  CAS  Google Scholar 

  6. Levin, R., Vieira, C.L.Z., Mordarski, D.C., and Rosenbaum, M.H., Lead seasonality in humans, animals, and the natural environment, Environ. Res., 2020, vol. 180, p. 108797.

    Article  CAS  Google Scholar 

  7. Ivanov, Y.V., Kartashov, A.V., Ivanova, A.I., Ivanov, V.P., Marchenko, S.I., Nartov, D.I., and Kuznetsov, V.V., Long-term impact of cement plant emissions on the elemental composition of both soils and pine stands and on the formation of Scots pine seeds, Environ. Pollut., 2018, vol. 243, p. 1383.

    Article  CAS  Google Scholar 

  8. De Silva, S., Bernett, C., Meaklim, J., Abeywardane, E., and Reichman, S.M., Probing the effects of different lead compounds on the bioavailability of lead to plants, Chemosphere, 2019, vol. 230, p. 24.

    Article  CAS  Google Scholar 

  9. Magrisso, S., Belkin, S., and Erel, Y., Lead bioavailability in soil and soil components, Water, Air Soil Pollut., 2009, vol. 202, p. 315.

    Article  CAS  Google Scholar 

  10. Grobelak, A., Placek, A., Grosser, A., Singh, B.R., Almås, Å.R., Napora, A., Kacprzak, M., Effects of single sewage sludge application on soil phytoremediation, J. Clean. Prod., 2017, vol. 155, p. 189.

    Article  CAS  Google Scholar 

  11. Bandurska, K.M., Berdowska, A.K., and Krupa, P.P., The protective role of ectomyccorhizas in relation to Pinus sylvestris L. growing in areas contaminated with heavy metals, Pol. J. Environ. Stud., 2020. vol. 29, p. 3049.

    Article  CAS  Google Scholar 

  12. Pourrut, B., Shahid, M., Dumat, C., Winterton, P., and Pinelli, E., Lead uptake, toxicity, and detoxification in plants, Rev. Environ. Contam. Toxicol., 2011, vol. 213, p. 113.

    CAS  PubMed  Google Scholar 

  13. Dalyan, E., Yüzbaşıoğlu, E., and Akpınar, I., Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress, in Lead in Plants and the Environment, Gupta, D.K., Chatterjee, S., and Walther, C., Eds., Cham: Springer-Verlag, 2020, p. 129.

    Google Scholar 

  14. Seregin, I.V. and Ivanov, V.B., Physiological aspects of cadmium and lead toxic effects on higher plants, Russ. J. Plant Physiol., 2001, vol. 48, p. 523.

    Article  CAS  Google Scholar 

  15. Bizo, M.L., Nietzsche, S., Mansfeld, U., Langenhorst, F., Majzlan, J., Göttlicher, J., Ozunu, A., Formann, S., Krause, K., and Kothe, E., Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles, Environ. Sci. Pollut. Res., 2017, vol. 24, p. 14455.

    Article  CAS  Google Scholar 

  16. Bierza, W., Bierza, K., Trzebny, A., Greń, I., Dabert, M., Ciepał, R., and Trocha, L.K., The communities of ectomycorrhizal fungal species associated with Betula pendula Roth and Pinus sylvestris L. growing in heavy-metal contaminated soils, Plant Soil, 2020, vol. 457, p. 321.

    Article  Google Scholar 

  17. Ivanov, Y.V., Kartashov, A.V., Ivanova, A.I., Savochkin, Y.V., and Kuznetsov, V.V., Effects of zinc on Scots pine (Pinus sylvestris L.) seedlings grown in hydroculture, Plant Physiol. Biochem., 2016, vol. 102, p. 1.

    Article  CAS  Google Scholar 

  18. Ivanov, Yu.V., Ivanova, A.I., Kartashov, A.V., and Kuznetsov, V.V., Phytotoxicity of short-term exposure to excess zinc or copper in Scots pine seedlings in relation to growth, water status, nutrient balance, and antioxidative activity, Environ. Sci. Pollut. Res., 2021, vol. 28, p. 14828. https://doi.org/10.1007/s11356-020-11723-x

    Article  CAS  Google Scholar 

  19. Miller, R.G., Doerger, J.U., Kopfler, F.C., Stober, J., and Roberson, P., Influence of the time of acidification after sample collection on the preservation of drinking water for lead determination, Anal. Chem., 1985, vol. 57, p. 1020.

    Article  CAS  Google Scholar 

  20. Zlobin, I.E., Ivanov, Y.V., Kartashov, A.V., and Kuznetsov, V.V., Impact of drought stress induced by polyethylene glycol on growth, water relations and cell viability of Norway spruce seedlings, Environ. Sci. Pollut. Res., 2018, vol. 25, p. 8951.

    Article  CAS  Google Scholar 

  21. Ivanov, Y.V., Zlobin, I.E., Kartashov, A.V., Savochkin, Y.V., and Kuznetsov, V.V., Effect of prolonged water deficiency of various intensities on growth, water homeostasis and physiological activity of pine seedlings, Russ. J. Plant Physiol., 2019, vol. 66, p. 440.

    Article  CAS  Google Scholar 

  22. Taulavuori, E., Hellström, E.K., Taulavuori, K., and Laine, K., Comparison of two methods used to analyse lipid peroxidation from Vaccinium myrtillus (L.) during snow removal, reacclimation and cold acclimation, J. Exp. Bot., 2001, vol. 52, p. 2375.

    Article  CAS  Google Scholar 

  23. Gérard-Monnier, D., Erdelmeier, I., Régnard, K., Moze-Henry, N., Yadan, J.C., and Chaudiere, J., Reactions of 1-methyl-2-phenylindole with malondialdehyde and 4-hydroxyalkenals. Analytical applications to a colorimetric assay of lipid peroxidation, Chem. Res. Toxicol., 1998, vol. 11, p. 1176.

    Article  Google Scholar 

  24. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., and Rice-Evans, C., Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med., 1999, vol. 26, p. 1231.

    Article  CAS  Google Scholar 

  25. Singleton, V.L. and Rossi, J.A., Calorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Viticult., 1965, vol. 16, p. 144.

    CAS  Google Scholar 

  26. Sun, B., Ricardo-da-Silva, J.M., and Spranger, I., Critical factors of vanillin assay for catechins and proanthocyanidins, J. Agric. Food Chem., 1998, vol. 46, p. 4267.

    Article  CAS  Google Scholar 

  27. Varela, M.C., Arslan, I., Reginato, M.A., Cenzano, A.M., and Luna, M.V., Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina), Plant Physiol. Biochem., 2016, vol. 104, p. 81.

    Article  CAS  Google Scholar 

  28. Eruslanov, E. and Kusmartsev, S., Identification of ROS using oxidized DCFDA and flow-cytometry, in Advanced Protocols in Oxidative Stress II, Armstrong, D., Ed., Totowa, NJ: Humana Press, 2010, p. 57.

    Google Scholar 

  29. Zhao, J., Giammar, D.E., Pasteris, J.D., Dai, C., Bae, Y., and Hu, Y., Formation and aggregation of lead phosphate particles: Implications for lead immobilization in water supply systems, Environ. Sci. Technol., 2018, vol. 52, p. 12612.

    Article  CAS  Google Scholar 

  30. Laperche, V., Logan, T.J., Gaddam, P., and Traina, S.J., Effect of apatite amendments on plant uptake of lead from contaminated soil, Environ. Sci. Technol., 1997, vol. 31, p. 2745.

    Article  CAS  Google Scholar 

  31. Zlobin, I.E., Kartashov, A.V., Pashkovskiy, P.P., Ivanov, Y.V., Kreslavski, V.D., and Kuznetsov, V.V., Comparative photosynthetic responses of Norway spruce and Scots pine seedlings to prolonged water deficiency, J. Photochem. Photobiol. B, 2019, vol. 201, p. 111659.

    Article  CAS  Google Scholar 

  32. Heo, H.J., Kim, Y.J., Chung, D., and Kim, D.O., Antioxidant capacities of individual and combined phenolics in a model system, Food Chem., 2007, vol. 104, p. 87.

    Article  CAS  Google Scholar 

  33. Schofield, P., Mbugua, D.M., and Pell, A.N., Analysis of condensed tannins: a review, Anim. Feed Sci. Technol., 2001, vol. 91, p. 21.

    Article  CAS  Google Scholar 

  34. Godbold, D.L. and Kettner, C., Lead influences root growth and mineral nutrition of Picea abies seedlings, J. Plant Physiol., 1991, vol. 139, p. 95.

    Article  CAS  Google Scholar 

  35. Demidchik, V., Mechanisms and physiological roles of K+ efflux from root cells, J. Plant Physiol., 2014, vol. 171, p. 696.

    Article  CAS  Google Scholar 

  36. Abdel-Basset, R., Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium, Acta Physiol. Plant., 1998, vol. 20, p. 149.

    Article  CAS  Google Scholar 

  37. Levan, M.A. and Riha, S.J., The precipitation of black oxide coatings on flooded conifer roots of low internal porosity, Plant Soil, 1986, vol. 95, p. 33.

    Article  CAS  Google Scholar 

  38. Liu, J., Leng, X., Wang, M., Zhu, Z., and Dai, Q., Iron plaque formation on roots of different rice cultivars and the relation with lead uptake, Ecotoxicol. Environ. Saf., 2011, vol. 74, p. 1304.

    Article  CAS  Google Scholar 

  39. Wegiel, A., Bielinis, E., and Polowy, K., Heavy metals accumulation in Scots pine stands of different densities growing on not contaminated forest area (northwestern Poland), Austr. J. For. Sci., 2018, vol. 135, p. 259.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 121040800153-1).

Author information

Authors and Affiliations

Authors

Contributions

Y.V. Ivanov: Conceptualization, Methodology, Writing – Original Draft, Review & Editing. A.I. Ivanova: Methodology, Investigation, Validation. A.V. Kartashov: Methodology, Investigation, Visualization. I.E. Zlobin: Methodology, Investigation. Vl.V. Kuznetsov: Conceptualization, Supervision, Funding acquisition.

Corresponding author

Correspondence to Y. V. Ivanov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: 4-HA—4-hydroxyalkenals; DCFH—dichlorofluorescin diacetate; FDA—fluorescein diacetate; GAE—gallic acid equivalents; PA—proanthocyanidins; TBARS—thiobarbituric acid-reactive substances; TEAC—Trolox equivalent antioxidant capacity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.V., Ivanova, A.I., Kartashov, A.V. et al. The Actual Lead Toxicity for Scots Pine Seedlings in Hydroculture. Russ J Plant Physiol 68 (Suppl 1), S103–S115 (2021). https://doi.org/10.1134/S1021443721070050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721070050

Keywords:

Navigation