Skip to main content
Log in

Genetic Dissection of the Photosynthetic Parameters of Maize (Zea mays L.) in Drought-Stressed and Well-Watered Environments

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Photosynthesis is a critical function that allows adaptation to drought stress in maize (Zea mays L.). Therefore, elucidation of the genetic control of photosynthetic performance under drought stress and the associated molecular markers is of great importance for marker-assisted selection (MAS). Here, we detected 54 quantitative trait loci (QTLs) affecting the net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), ribulose 1,5-biphosphate carboxylase activity (RuBP), and water use efficiency (WUE) of the ear leaf across two F4 populations in drought-stressed and well-watered environments by single-environment mapping with composite interval mapping (CIM), and 43 QTLs identified under drought stress, indicating that the tolerance to photoinhibition is a key factor affecting drought stress tolerance in maize. We further dissected 54 QTLs via joint analysis of all environments with mixed-linear-model-based CIM (MCIM), including 24 involved in QTL-by-environment interactions (QEIs), 87.5% QEIs identified under drought stress, 14 pairs showing epistatic interactions with dominance-by-additive/dominance effects under contrasting environments. We further identified eight constitutive QTLs (cQTLs) across two populations by CIM/MCIM, which could be used for genetic improvement of maize via QTL pyramiding. The co-localization of five cQTLs in bin 1.07_1.10/6.05/7.02_7.04/8.03/10.03 under contrasting environments in both populations strongly supported pleiotropy. Additionally, 17 candidate genes located at the above-mentioned cQTLs were involved in photomorphogenesis, photosynthesis, and stress response. These results provide insights into the genetic mechanisms responsible for photosynthesis under different water availability conditions, and reveal alleles that could potentially be used for MAS-based development of drought tolerant maize cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Zhao, X.Q., Ren, B., Peng, Y.L., Xu, M.X., Fang, P., Zhuang, Z.L., Zhang, J.W., Zeng, W.J., Gao, Q.H., Ding, Y.F., and Chen, F.Q., Epistatic and QTL × environment interaction effects for ear related traits in two maize (Zea mays) populations under eight watering environments, Acta Agron. Sin., 2019, vol. 45, p. 856.

    Article  Google Scholar 

  2. Liu, J., Guo, Y.Y., Bai, Y.W., Li, H.J., Xue, J.Q., and Zhang, R.H., Response of photosynthesis in maize to drought and re-watering, Russ. J. Plant Physiol., 2019, vol. 66, p. 424.

    Article  CAS  Google Scholar 

  3. Zhao, X.Q., Lu, Y.T., Bai, M.X., Xu, M.X., Peng, Y.L., Ding, Y.F., Zhuang, Z.L., Chen, F.Q., and Zhang, D.Z., Response analysis of maize genotypes with different plant architecture to drought stress, Acta Pratacult. Sin., 2020, vol. 29, p. 149.

    Google Scholar 

  4. Zhang, R.H., Zhang, X.H., Camberato, J.J., and Xue, J.Q., Photosynthetic performance of maize hybrids to drought stress, Russ. J. Plant Physiol., 2015, vol. 62, p. 788.

    Article  CAS  Google Scholar 

  5. Liu, J., Guo, Y.Y., Bai, Y.W., Camberato, J.J., Xue, J.Q., and Zhang, R.H., Effects of drought stress on the photosynthesis in maize, Russ. J. Plant Physiol., 2018, vol. 65, p. 849.

    Article  CAS  Google Scholar 

  6. Pshenichnikova, T.A., Doroshkov, A.V., Osipova, S.V., Permyakov, A.V., Permyakova, M.D., Efimov, V.M., and Afonnikov, D.A., Quantitative characteristics of pubescence in wheat (Triticum aestivum L.) are associated with photosynthetic parameters under conditions of normal and limited water supply, Planta, 2019, vol. 249, p. 839.

    Article  CAS  Google Scholar 

  7. Vivitha, P., Raveendran, M., Vijayalakshmi, C., and Vijayalakshmi, D., Genetic dissection of high temperature stress tolerance using photosynthesis parameters in QTL introgressed lines of rice cv. improved white Ponni, Ind. J. Plant Physiol., 2018, vol. 23, p. 741.

    Article  CAS  Google Scholar 

  8. Levi, A., Lianne, O., Paterson, A.H., and Saranga, Y., Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits, Plant Sci., 2009, vol. 177, p. 88.

    Article  CAS  Google Scholar 

  9. Wang, A.Y. and Zhang, C.Q., QTL mapping for chiprophyll content in maize, Hereditas, 2008, vol. 30, p. 1083.

    CAS  PubMed  Google Scholar 

  10. Trachsel, S., Messmer, R., Stamp, P., Ruta, N., and Hund, A., QTLs for early vigor of tropical maize, Mol. Breed., 2010, vol. 25, p. 91.

    Article  Google Scholar 

  11. Yu, T.T., Liu, C.X., Mei, X.P., Wang, J.G., Wang, G.Q., and Cai, Y.L., Correlation and QTL analyses for photosynthetic traits in maize, J. Southwest Univ., 2015, vol. 37, p. 1.

    Google Scholar 

  12. Pelleschi, S., Leonardi, A., Rocher, J.-P., Cornic, G., de Vienne, D., Thevenot, C., and Prioul, J.-L., Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTLs) in young maize plants subjected to water deprivation, Mol. Breed., 2006, vol. 17, p. 21.

    Article  CAS  Google Scholar 

  13. Prado, S.A., Cabrera-Bosquet, L., Grau, A., Coupel-Ledru, A., Millet, E.J., Welcker, C., and Tardieu, F., Phenomics allows identification of genomic regions affecting maize stomatal conductance with conditional effects of water deficit and evaporative demand, Plant Cell Environ., 2018, vol. 41, p. 314.

    Article  CAS  Google Scholar 

  14. Zhao, X.Q., Zhang, J.W., Fang, P., and Peng, Y.L., Comparative QTL analysis for yield components and morphological traits in maize (Zea mays L.) under water-stressed and well-watered conditions, Breed. Sci., 2019, vol. 69, p. 621.

    Article  Google Scholar 

  15. Zhao, X.Q., Fang, P., Zhang, J.W., and Peng, Y.L., QTL mapping for six ear leaf architecture traits under water-stressed and well-watered conditions in maize (Zea mays L.), Plant Breed., 2018, vol. 137, p. 60.

    Article  CAS  Google Scholar 

  16. Zhao, X.Q., Peng, Y.L., Zhang, J.W., Fang, P., and Wu, B.Y., Mapping QTLs and meta-QTLs for two inflorescence architecture traits in multiple maize populations under different watering environments, Mol. Breed., 2017, vol. 37, p. 91.

    Article  Google Scholar 

  17. Zhao, X.Q., Peng, Y.L., Zhang, J.W., Fang, P., and Wu, B.Y., Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions, Crop Sci., 2018, vol. 58, p. 507.

    Article  CAS  Google Scholar 

  18. Zhou, L., Wang, S.Q., Chi, Y.G., Li, Q.K., Huang, K., and Yu, Q.Z., Response of photosynthetic parameters to drought in subtropical forest ecosystem of China, Sci. Rep., 2015, vol. 5, p. 18254.

    Article  CAS  Google Scholar 

  19. Li, H.T., Xu, H.Y., Li, J.F., Zhu, Q., Chi, M., and Wang, J., Analysis of gene effect on chlorophyll content in maize, Crops, 2019, vol. 5, p. 46.

    Google Scholar 

  20. Liu, P.F., Jiang, F., Chen, Q.C., Zeng, M.H., Zhang, Y., Zhang, Z.L., and Wang, X.M., Genetic analysis on chlorophyll content of leaf in fresh-eatable sweet corn, J. Anhui Agric. Univ., 2013, vol. 40, p. 134.

    Google Scholar 

  21. Sa, K.J., Park, J.Y., Woo, S.Y., Ramekar, R.V., Jang, C.S., and Lee, J.K., Mapping of QTL traits in corn using a RIL population derived from a cross of dent corn × waxy corn, Genes Genome, 2015, vol. 37, p.1.

    Article  Google Scholar 

  22. Li, Y.D., Wang, Y., Tang, H., Xu, H., Tan, J.F., and Han, Y.L., QTL mapping for ear leaf stay-green in maize under high and low N conditions, J. Plant Nutr. Fertil., 2019, vol. 25, p. 115.

    CAS  Google Scholar 

  23. Peng, B., Wang, Y., Li, Y.X., Liu, C., Zhang, Y., Liu, Z.Z., Tan, W.W., Wang, D., Sun, B.C., Shi, Y.S., Song, Y.C., Wang, T.Y., and Li, Y., Correlation analysis and conditional QTL analysis of grain yield and yield components in maize, Acta Agron. Sin., 2010, vol. 36, p. 1624.

    CAS  Google Scholar 

  24. Zhao, L., Cheng, D.M., Huang, X.H., Chen, M., Osto, L.D., Xing, J.L., Gao, L.Y., Li, L.Y., Wang, Y.L., Bassi, R., Peng, L.W., Wang, Y.C., Rochaix, J.D., and Huang, F., A light harvesting complex-like protein in maintenance of photosynthetic components in Chlamydomonas, Plant Physiol., 2017, vol. 174, p. 2419.

    Article  CAS  Google Scholar 

  25. Luo, T., Fan, T., Liu, Y., Rothbart, M., Yu, J., Zhou, S., Grimm, B., and Luo, M., Thioredoxin redox regulates ATPase activity of magnesium chelatase CHLI subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants, Plant Physiol., 2012, vol. 159, p. 118.

    Article  CAS  Google Scholar 

  26. Wang, F., Duan, S.M., Li, T., Wang, R.N., and Tao, Y.S., Fine mapping and candidate gene analysis of leaf color mutant in maize, J. Plant Genet. Resour., 2018, vol. 19, p. 1205.

    Google Scholar 

  27. Guo, S.L., Zhang, J., Qi, J.S., Yue, R.Q., Han, X.H., Yan, S.F., Lu, C.X., Fu, X.L., Chen, N.N., Ku, L.X., and Tie, S.G., Analysis of meta-quantitative trait loci and their candidate genes related to leaf shape in maize, Chin. Bull. Bot., 2018, vol. 53, p. 487.

    Google Scholar 

  28. Wallappa, C., Yadav, V., Negi, P., and Chattopadhyay, S., A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light mediated photomorphogenic growth in Arabidopsis, Biol. Chem., 2006, vol. 281, p. 22190.

    Article  Google Scholar 

  29. Choi, H., Jeong, S., Kim, D.S., Na, H.J., Ryu, J.S., Lee, S.S., Nam, H.G., Lim, P.O., and Woo, H.R., The homeodomain-leucine zipper ATHB23, a phytochrome B-interacting protein, is important for phytochrome B-mediated red light signaling, Physiol. Plant, 2014, vol. 150, p. 308.

    Article  CAS  Google Scholar 

  30. Schreiber, D.N., Bantin, J., and Dresselhaus, T., The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence, Plant Physiol., 2004, vol. 134, p. 1069.

    Article  CAS  Google Scholar 

Download references

Funding

The study was partially supported by the Research Program Sponsored by Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, China (project no. GSCS-2019-8; GSCS-2020-5), the National Natural Science Foundation of China (project no. 32060486), the Scientific Research Start-up Funds for Openly-recruited Doctors, Science and Technology Innovation Funds of Gansu Agricultural University, China (project nos. GAU-KYQD-2018-19; GAU-KYQD-2018-12), the Developmental Funds of Innovation Capacity in Higher Education of Gansu, China (project nos. 2019A-052; 2019A-054), and the Transverse Project of Lanzhou Qinglü Instrument and Technology Company, China (project no. WT20191025).

Author information

Authors and Affiliations

Authors

Contributions

Authors X.Q. Zhao and Y. Zhong contributed equally to this work.

Corresponding author

Correspondence to X. Q. Zhao.

Ethics declarations

This article does not contain any studies involving animals or human participants as objects of research. The authors declare that they have no conflict of interest.

Additional information

Abbreviations: Ci—intercellular CO2 concentration; CIM— composite interval mapping; cQTLs—constitutive quantitative trait loci; GEI—genotype × environment interaction; Gs—stomatal conductance; MAS—marker-assisted selection; MCIM— mixed-linear-model-based composite interval mapping; Pn— net photosynthetic rate; QEIs—quantitative trait loci-by-environment interactions; QTLs—quantitative trait loci; RuBP— ribulose 1,5-biphosphate carboxylase activity; Tr—transpiration rate; WUE—water use efficiency.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X.Q., Zhong, Y. Genetic Dissection of the Photosynthetic Parameters of Maize (Zea mays L.) in Drought-Stressed and Well-Watered Environments. Russ J Plant Physiol 68, 1125–1134 (2021). https://doi.org/10.1134/S1021443721060236

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060236

Keywords:

Navigation