Skip to main content
Log in

Three MTP Transporters Sequestrate Zn in Sedum alfredii Hance

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Hyperaccumulating ecotype (HE) of Sedum alfredii Hance is a Zn/Cd hyperaccumulator, which can accumulate Zn in shoot up to 2% of dry weight, understanding the mechanism of Zn tolerance and accumulation can improve its application in phytoremediation. In this study, the function of two metal tolerance protein (MTP) genes of HE plants (SaMTP2h and SaMTP3h) was comparatively analyzed with the known SaMTP1. Three transporters could complement Zn sensitivity in yeast mutant in different levels. mRNA level of SaMTP1 in shoot was constitutively and highly expressed which was thousands of times of other two genes. mRNA level of SaMTP1 was not affected by Zn/Cd treatment, while mRNA levels of SaMTP2h and SaMTP3h were up-regulated by 50 µM Cd or 500 µM Zn treatment. SaMTP2h was significantly higher expressed in young leaves while SaMTP1 and SaMTP3h were relatively equally expressed in different leaves; SaMTP1 was higher expressed in mesophyll and SaMTP3h was significantly higher expressed in epidermis. Overexpression of SaMTP1, SaMTP2h or SaMTP3h significantly enhanced Zn tolerance and accumulation in tobacco plants and complemented Zn sensitivity in Arabidopsis mtp1-1 mutant. In conclusion, our study revealed that three MTPs could play significant but different roles in Zn accumulation and tolerance in HE plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Yang, X.E., Long, X.X., Ni, W.Z., and Fu, C.X., Sedum alfredii H.: a new Zn hyperaccumulating plant first found in China, Chin. Sci. Bull., 2002, vol. 47, p. 1003.

    Article  Google Scholar 

  2. Yang, X.E., Long, X.X., Ye, H.B., He, Z.L., Calvert, D.V., and Stoffella, P.J., Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant specie (Sedum alfredii Hance), Plant Soil, 2004, vol. 259, p. 181.

    Article  CAS  Google Scholar 

  3. Yang, X.E., Li, T.Q., Long, X.X., Xiong, X.H., He, Z.L., and Stoffella, P.J., Dynamics of zinc uptake and accumulation in the hyperaccumulating and non-hyperaccumulating ecotypes of Sedum alfredii Hance, Plant Soil, 2006, vol. 284, p. 109.

    Article  CAS  Google Scholar 

  4. Chao, Y.E., Zhang, M., Feng, Y., Yang, X.E., and Islam, E., cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction, Environ. Exp. Bot., 2010, vol. 68, p. 107.

    Article  CAS  Google Scholar 

  5. Zhang, M., Senoura, T., Yang, X.E., and Nishizawa, N.K., Functional analysis of metal tolerance proteins isolated from Zn/Cd hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance, FEBS Lett., 2011, vol. 16, p. 2604.

    Article  Google Scholar 

  6. Zhang, J., Zhang, M., Shohag, M.J.I., Tian, S.K., Song, H.Y., Feng, Y., and Yang, X.E., Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance, Planta, 2016, vol. 243, p. 577.

    Article  CAS  Google Scholar 

  7. Gao, J., Sun, L., Yang, X.E., and Liu, J.X., Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance, PLoS One, 2013, vol. 8, p. e64643.

    Article  CAS  Google Scholar 

  8. Zhang, J., Zhang, M., Tian, S.K., Lu, L.L., Shohag, M.J.I., and Yang, X.E., Metallothionein 2 (SaMT2) from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco, PLoS One, 2014, vol. 9, p. e102750.

    Article  Google Scholar 

  9. Zhang, M., Zhang, J., Lu, L.L., Zhu, Z.Q., and Yang, X.E., Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii, Biol. Plant., 2016, vol. 60, p. 37.

    Article  CAS  Google Scholar 

  10. Yang, Q.Y., Ma, X.X., Luo, S., Gao, J., Yang, X.E., and Feng, Y., SaZIP4, an uptake transporter of Zn/Cd hyperaccumulator Sedum alfredii Hance, Environ. Exp. Bot., 2018, vol. 155, p. 107.

    Article  CAS  Google Scholar 

  11. Chen, S.N., Zhang, M., Feng, Y., Sahito, Z.A., Tian, S.K., and Yang, X.E., Nicotianamine synthesis gene 1 from the hyperaccumulator Sedum alfredii Hance is associate with Cd/Zn tolerance and accumulation in plants, Plant Soil, 2019, vol. 443, p. 413.

    Article  CAS  Google Scholar 

  12. Clemens, S., A long way ahead: understanding and engineering plant metal accumulation, Trends Plant Sci., 2002, vol. 7, p. 309.

    Article  CAS  Google Scholar 

  13. Verbruggen, N., Hermans, C., and Schat, H., Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 2009, vol. 181, p. 759.

    Article  CAS  Google Scholar 

  14. Krämer, U., Metal hyperaccumulation in plants, Annu. Rev. Plant Biol., 2010, vol. 61, p. 517.

    Article  Google Scholar 

  15. Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A., and Richaud, P., AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis, Plant Physiol., 2009, vol. 149, p. 894.

    Article  CAS  Google Scholar 

  16. Becher, M., Talke, I.N., Krall, L., and Krämer, U., Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis helleri, Plant J., 2004, vol. 37, p. 251.

    Article  CAS  Google Scholar 

  17. Ueno, D., Milner, M.J., Yamaji, N., Yokosho, K., Koyama, E., Zambrano, M.C., Kaskie, M., Ebbs, S., Kochian, L.V., and Ma, J.F., Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens, Plant J., 2011, vol. 66, p. 852.

    Article  CAS  Google Scholar 

  18. MacDiarmid, C.W., Milanick, M.A., and Eide, D.J., Induction of the ZRC1 metal tolerance gene in zinc-limited yeast confers resistance to zinc stock, J. Biol. Chem., 2003, vol. 278, p. 15065.

    Article  CAS  Google Scholar 

  19. van, der, Zaal, B.J., Neuteboom, L.W., Pinas, J.E., Chardonnens, A.N., Schat, H., Verkleij, J.A.C., and Hooykaas, P.J.J., Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation, Plant Physiol., 1999, vol. 119, p. 1047.

  20. Desbrosses-Fonrouge, A.G., Voigt, K., Schröder, A., Arrivault, S., Thomine, S., and Krämer, U., Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation, FEBS Lett., 2005, vol. 579, p. 4165.

    Article  CAS  Google Scholar 

  21. Gustin, J.L., Loureiro, M.E., Kim, D., Na, G., Tikhonova, M., and Salt, D.E., MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn-hyperaccumulating plants, Plant J., 2009, vol. 57, p. 1116.

    Article  CAS  Google Scholar 

  22. Shingu, Y., Kudo, T., Ohsato, S., Kimura, M., Ono, Y., Yamaguchi, I., and Hamamoto, H., Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum, Biochem. Biophys. Res. Commun., 2005, vol. 331, p. 675.

    Article  CAS  Google Scholar 

  23. Chen, M., Shen, X., Li, D.F., Ma, L., Dong, J.G., and Wang, T., Identification and characterization of MtMTP1, a Zn transporter of CDF family, in the Medicago truncatula, Plant Physiol. Biochem., 2009, vol. 47, p. 1089.

    Article  CAS  Google Scholar 

  24. Shahzad, Z., Gosti, F., Frérot, H., Lacombe, E., Roosens, N., Saumitou-Laprade, P., and Berthomieu, P., The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis helleri, PLoS Genet., 2010, vol. 6, p. 1.

    Article  Google Scholar 

  25. Montanini, B., Blaudez, D., Jeandroz, S., Sanders, D., and Chalot, M., Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family: improved signature and prediction of substrate specificity, BMC Genomics, 2007, vol. 8, p. 107.

    Article  Google Scholar 

  26. Gietz, R.D. and Schiestl, R.H., Transforming yeast with DNA, Methods Mol. Cell. Biol., 1995, vol. 5, p. 255.

    Google Scholar 

  27. Helmer, G., Casadaban, M., Bevan, M., Kayes, L., and Chilton, M.D., A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli β-galactosidase in sunflower and tobacco cells, Nat. Biotechnol., 1984, vol. 2, p. 520.

    Article  CAS  Google Scholar 

  28. Clough, S.J. and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, vol. 16, p. 735.

    Article  CAS  Google Scholar 

  29. Tian, S.K., Lu, L.L., Yang, X.E., Labavitch, J.M., Huang, Y.Y., and Brown, P., Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii, New Phytol., 2009, vol. 182, p. 116.

    Article  CAS  Google Scholar 

  30. Wu, H.L., Chen, C.L., Du, J., Liu, H.F., Cui, Y., Zhang, Y., He, Y.J., Wang, Y.Q., Chu, C.C., Feng, Z.Y., Li, J.M., and Ling, H.Q., Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots, Plant Physiol., 2012, vol. 158, p. 790.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Prof. David Eide for providing us the CM100 strain and Δzrc1 mutant strain.

Funding

The present study was supported by National Natural Science Foundation of China (project no. 3130183).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. W. Ji.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: HE—hyperaccumulating ecotype; HMA—heavy metal ATPase; MTP—metal tolerance protein; NHE—non-hyperaccumulating ecotype.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, J., Jiao, R.T. et al. Three MTP Transporters Sequestrate Zn in Sedum alfredii Hance. Russ J Plant Physiol 68, 1115–1124 (2021). https://doi.org/10.1134/S1021443721060212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060212

Keywords:

Navigation