Skip to main content
Log in

Molecular Cloning and Adversity Stress Expression Analysis of SPDS Genes in Mulberry (Morus notabilis)

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Spermidine (SPD), as a signal molecule, participates in the response of plants to adversity stress. In the biosynthesis of SPD, spermidine synthase (SPDS) is the key enzyme that catalyzes the synthesis of putrescine into SPD. TWO cDNA sequence coding spermidine synthases have been cloned from mulberry (MnSPDS) in the present report. Sequence analysis revealed that their ORF were 1005 and 1188bp in length, encoding 334 and 395 amino acid protein, respectively. MnSPDS genes belonged to S-adenosyl-L-methionone, AdoMet-MTase, Class I superfamily. Phylogenetic analysis of the amino acid sequences encoded by the spermidine synthase gene from different species reveals that Morus notabilis C.K. Schneid. was closely connected to Arabidopsis thaliana. MnSPDS genes expression patterns treated under drought, pathogen treatment were investigated using quantitative PCR (RT-qPCR) in real-time. The level of mRNA showed a significant change in drought and pathogen treatment compared to the standard growth environment. Especially, the peak expression of MnSPDS2 gene was 3.2 times that of MnSPDS1gene under drought stress, however, for the treatment of Botrytis cinerea, the peak of transcript level of MnSPDS1 gene was 4.2 times that of MnSPDS2 gene. These findings provide useful reference information for the molecular basis of signal transduction in mulberry trees during stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., and Tamaoki, M., Spermidine synthase genes are essential for survival of Arabidopsis, Plant Physiol., 2004, vol. 135, p. 1565.

    Article  CAS  Google Scholar 

  2. Wen, X.P., Ban, Y., Inoue, H., Matsuda, N., and Moriguchi, T., Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities, Transgenic Res., 2010, vol. 19, p. 91.

    Article  CAS  Google Scholar 

  3. Fu, Y., Gu, Q., Dong, Q., Zhang, Z., Lin, C., Hu, W., Pan, R., Guan, Y., and Hu, J., Spermidine enhances heat tolerance of rice seeds by modulating endogenous starch and polyamine metabolism, Molecules, 2019, vol. 24, p. 1395.

    Article  CAS  Google Scholar 

  4. Wen, X.P., Ban, Y., Inoue, H., Matsuda, N., and Moriguchi, T., Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status, Environ. Exp. Bot., 2009, vol. 66, p. 471.

    Article  CAS  Google Scholar 

  5. Fu, X.Z., Chen, C.W., Yin, W., Liu, J.H., and Moriguchi, T., Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration, BMC Plant Biol., 2011, vol. 11, p. 55.

    Article  CAS  Google Scholar 

  6. Guo, H., Xia, Z., and Li, D., Molecular cloning, expression patterns and characterization of a new spermidine synthase gene in Oryza sativa, Chin. J. Trop. Crops, 2013, vol. 34, p. 285.

    CAS  Google Scholar 

  7. Ji, T., Su, S.I., Sheng, G., Qian, D.W., and Duan, J.A., Evaluate drug interaction of multi-components in Morus alba leaves based on α-glucosidase inhibitory activity, China J. Chin. Mater. Med., 2016, vol. 41, p. 1999.

    Google Scholar 

  8. Chan, E.W.-C., Lye, P.-Y., and Wong, S.-K., Phytochemistry, pharmacology, and clinical trials of Morus alba, Chin. J. Nat. Med., 2016, vol. 1, p. 25.

    CAS  Google Scholar 

  9. Dong, Y.S., Yu, N., Li, X., Zhang, B., Xing, Y., Zhuang, C., and Xiu, Z.L., Dietary 5,6,7-trihydroxy-flavonoid aglycones and 1-deoxynojirimycin synergistically inhibit the recombinant maltase–glucoamylase subunit of α-glucosidase and lower postprandial blood glucose, J. Agric. Food Chem., 2020, vol. 68, p. 8774.

    Article  CAS  Google Scholar 

  10. Liu, C.G., Ma, Y.P., and Zhang, X.J., Effects of mulberry leaf polysaccharide on oxidative stress in pancreatic cells of type 2 diabetic rats, Eur. Rev. Med. Pharmacol. Sci., 2017, vol. 21, p. 2482.

    PubMed  Google Scholar 

  11. He, N., Zhang, C., Qi, X., and Zhao, S., Draft genome sequence of the mulberry tree Morus notabilis, Nat. Commun., 2013, vol. 4, p. 2445.

    Article  Google Scholar 

  12. Xin, Y., Meng, S., Ma, B., He, W., and He, N., Mulberry genes MnANR and MnLAR confer transgenic plants with resistance to Botrytis cinerea, Plant Sci., 2020, vol. 296, p. 110473.

    Article  CAS  Google Scholar 

  13. Xu, Y.Q., Wang, H., Qin, R.L., Fang, L.J., Liu, Z., Yuan, S.S., Gai, Y.P., and Ji, X.L., Characterization of NPR1 and NPR4 genes from mulberry (Morus multicaulis) and their roles in development and stress resistance, Physiol. Plant, 2019, vol. 167, p. 302.

    Article  CAS  Google Scholar 

  14. Wei, C., Liu, X., Long, D., Guo, Q., Fang, Y., Bian, C., Zhang, D., Zeng, Q., Xiang, Z., and Zhao, A., Molecular cloning and expression analysis of mulberry MAPK gene family, Plant Physiol. Biochem., 2014, vol. 77, p. 108.

    Article  CAS  Google Scholar 

  15. Yao, K. and Wu, Y.Y., Phosphofructokinase and glucose-6-phosphate dehydrogenase in response to drought and bicarbonate stress at transcriptional and functional levels in mulberry, Russ. J. Plant Physiol., 2016, vol. 63, p. 235.

    Article  CAS  Google Scholar 

  16. Pegg, A.E. and Michael, A.J., Spermine synthase, Cell. Mol. Life Sci., 2010, vol. 67, p. 11.

    Article  Google Scholar 

  17. Hanzawa, Y., Imai, A., Michael, A.J., Komeda, Y., and Takahashi, T., Characterization of the spermidine synthase-related gene family in Arabidopsis thaliana, FEBS Lett., 2002, vol. 11, p. 176.

    Article  Google Scholar 

  18. Hashimoto, T., Tamaki, K., Suzuki, K.-I., and Yamada, Y., Molecular cloning of plant spermidine synthases, Plant Cell Physiol., 1998, vol. 39, p. 73.

    Article  CAS  Google Scholar 

  19. Choubey, A. and Rajam, M.V., RNAi-mediated silencing of spermidine synthase gene results in reduced reproductive potential in tobacco, Physiol. Mol. Biol. Plants, 2018, vol. 24, p. 1069.

    Article  CAS  Google Scholar 

  20. Franceschetti, M., Fornalè, S., Tassoni, A., Zuccherelli, K., Mayer, M.J., and Bagni, N., Effects of spermidine synthase overexpression on polyamine biosynthetic pathway in tobacco plants, Plant Physiol., 2004, vol. 161, p. 989.

    Article  CAS  Google Scholar 

  21. Zou, D., Min, Y., Liu, Y., Wei, X., and Wang, J., Identification of a spermidine synthase gene from soybean by recombinant expression, transcriptional verification, and sequence analysis, J. Agric. Food Chem., 2020, vol. 26, p. 2366.

    Article  Google Scholar 

  22. Yoon, S.O., Lee, Y.S., Lee, S.H., and Cho, Y.D., Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes, Biochim. Biophys. Acta, Gen. Subj., 2000, vol. 1, p. 17.

    Article  Google Scholar 

  23. Qiu, Z., Yan, S., Xia, B., Jiang, J., Yu, B., Lei, J., Chen, C., Chen, L., Yang, Y., and Wang, Y., The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase, J. Exp. Bot., 2019, vol. 19, p. 1.

    Google Scholar 

  24. Zhang, Z., Honda, C., Kita, M., Hu, C., Nakayama, M., and Moriguchi, T., Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing, Mol. Genet. Genomics, 2003, vol. 268, p. 799.

    Article  CAS  Google Scholar 

  25. Parvin, S., Kim, Y.J., Pulla, R.K., Sathiyamoorthy, S., Miah, M.G., Yu, J.K., Wasnik, N.G., and Yang, D.C., Identification and characterization of spermidine synthase gene from Panax ginseng, Mol. Biol. Rep., 2010, vol. 37, p. 923.

    Article  CAS  Google Scholar 

  26. Gomez-Jimenez, M., Paredes, M.A., Gallardo, F.G., and Olmos, S.C., Tissue-specific expression of olive S‑adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development, Planta, 2010, vol. 232, p. 629.

    Article  CAS  Google Scholar 

  27. Efrose, R.C., Flemetakis, E., Sfichi, L., Stedel, C., Kouri, E.D., Udvardi, M.K., Kotzabasis, K., and Katinakis, P., Characterization of spermidine and spermine synthases in Lotus japonicus: induction and spatial organization of polyamine biosynthesis in nitrogen fixing nodules, Planta, 2008, vol. 228, p. 37.

    Article  CAS  Google Scholar 

  28. Sichhart, Y. and DraGer, B., Immunolocalisation of spermidine synthase in Solanum tuberosum, Phytochemistry, 2013, vol. 91, p. 117.

    Article  CAS  Google Scholar 

  29. Nambeesan, S., Datsenka, T., Ferruzzi, M.G., Mall Ad I.A., Mattoo, A.K., and Handa, A.K., Overexpression of yeast spermidine synthase impacts ripening, senescence and decay symptoms in tomato, Plant J., 2010, vol. 63, p. 836.

    Article  CAS  Google Scholar 

  30. Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., and Tachibana, S., Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana, Plant Cell Physiol., 2004, vol. 45, p. 712.

    Article  CAS  Google Scholar 

  31. Carpita, N., Sabularse, D., Montezinos, D., and Delmer, D.P., Determination of the pore size of cell walls of living plant cells, Science, 1979, vol. 205, p. 1144.

    Article  CAS  Google Scholar 

  32. Verma, V., Ravindran, P., and Kumar, P.P., Plant hormone-mediated regulation of stress responses, BMC Plant Biol., 2016, vol. 16, p. 86.

    Article  Google Scholar 

  33. Wang, J., Zhang, L., Cao, Y., Qi, C., Li, S., Liu, L., Wang, G., Mao, A., Ren, S., and Guo, Y.D., CsATAF1 positively regulates drought stress tolerance by ABA-dependent pathway and promoting ROS scavenging in cucumber, Plant Cell Physiol., 2018, vol. 59, p. 930.

    Article  CAS  Google Scholar 

  34. Berr, A., McCallum, E.J., Alioua, A., Heintz, D., Heitz, T., and Shen, W.H., Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi, Plant Physiol., 2010, vol. 154, p. 1403.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Shanghai Biotechnology Company, for sequencing mulberry SPDS genome fragments.

Funding

This research was funded by “High-yield, high-quality and high-resistance mulberry variety selection and research on key supporting technologies” Guangxi Science and Technology Major Special Project, grant number (Guike AA19182012-2); National modern sericulture industry technology system construction special project (no. CARS-18).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: Z.X., N.H., Q.L.; performed the experiments: D.L., C.Q.,Y.Z.; analyzed the data: Q.L., Z.X., N.H., C.Q., D.L.,Y.Z.; wrote the paper: Q.L., Z.X., N.H., C.Q., D.L.,Y.Z.

Corresponding authors

Correspondence to Ch. Qiu or Q. Lin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zeng, Y., Qiu, C. et al. Molecular Cloning and Adversity Stress Expression Analysis of SPDS Genes in Mulberry (Morus notabilis). Russ J Plant Physiol 68, 1186–1193 (2021). https://doi.org/10.1134/S1021443721060108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060108

Keywords:

Navigation