Skip to main content
Log in

The Physiological Basis of Genotypic Variations in Low-Oxygen Stress Tolerance in the Vegetable Sweet Potato

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Waterlogging caused by rainfall or improper irrigation is a serious threat that limits the growth and yield of crop plants by hypoxia stress. In the current study, the seedlings of vegetable sweet potato (Ipomoea batatas (L.) Lam.) variety ‘NC1’ (hypoxia-tolerant) and ‘C211’ (hypoxia-sensitive) were treated with oxygen content of 2 mg/L. It was found that the growth rate, net photosynthetic rate (PN), transpiration rate (E), stomatal limitation (Ls), maximum net photosynthetic rate (Amax), diurnal respiratory rate (Rd), maximum Rubisco carboxylation rate (Vcmax), maximum electron transport rate (Jmax), ABA (abscisic acid) and IAA (indole-3-acetic acid) content were significantly higher in ‘NC1’ than those of ‘C211’. It is concluded that under hypoxia stress, tolerant genotype could maintain higher photosynthetic efficiency by maintaining higher stomatal conductance and Rubisco efficiency, to maintain the growth of the root system and the canopy. This study provides the basis for further dissection of the mechanism of low-oxygen stress in sweet potato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Li, X., Yang, H., and Lu, G., Low-temperature conditioning combined with cold storage inducing rapid sweetening of sweetpotato tuberous roots (Ipomoea batatas (L.) Lam.) while inhibiting chilling injury, Postharvest Biol. Technol., 2018, vol. 142, p. 1.

    Article  CAS  Google Scholar 

  2. Sun, H., Mu, T., Xi, L., Zhang, M., and Chen, J., Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods, Food Chem., 2014, vol. 156, p. 380.

    Article  CAS  Google Scholar 

  3. Ju, D., Mu, T.H., and Sun, H.N., Sweet potato and potato residual flours as potential nutritional and healthy food material, J. Integr. Agric., 2017, vol. 16, p. 2632.

    Article  CAS  Google Scholar 

  4. Rumahlatu, F.J., Turner, D.W., and Steer, B.T., Effect of waterlogging on the growth and yield of sweet-potato (Ipomoea batatas L.), Proc. the 5th Australian Agronomy Conf. “Agronomy in a Mediterranean Environment,” Erina, NSW: Reg. Inst., 1989, vol. 10, p. 12.

  5. Mishra, N., Mohanty, T.R., Ray, M., and Das, S., Effect of date of planting on growth, yield and economics of sweet potato (Ipomoea batatas L.) varieties in Keonjhar district of Odisha, India, Int. J. Curr. Microbiol. App-l. Sci., 2019, vol. 8, p. 2224.

    Article  CAS  Google Scholar 

  6. Voesenek, L.A. and Sasidharan, R., Ethylene and oxygen signaling-drive plant survival during flooding. Plant Biol. (Stuttgart), 2013, vol. 15, p. 426.

    Article  CAS  Google Scholar 

  7. Kaur, G., Singh, G., Motavalli, P.P., Nelson, K.A., Orlowski, J.M., and Golden, B.R., Impacts and management strategies for crop production in waterlogged or flooded soils: a review, Agron. J., 2020, vol. 112, p. 1475.

    Article  Google Scholar 

  8. Hu, Z., Li, S., Wang, Y., Sun, X., Zhang, X., and Li, M., Sulfur controlled cadmium dissolution in pore water of cadmium-contaminated soil as affected by DOC under waterlogging, Chemosphere, 2020, vol. 240, p. 124846.1.

  9. Jackson, M.B., Young, S.F., and Hall, K.C., Are roots a source of abscisic acid for the shoots of flooded pea plants? J. Exp. Bot., 1988, vol. 39, p. 1631.

    Article  CAS  Google Scholar 

  10. Winkel, A., Pedersen, O., Ella, E., Ismail, A.M., and Colmer, T.D., Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes, J. Exp. Bot., 2014, vol. 65, p. 3225.

    Article  CAS  Google Scholar 

  11. Luan, H., Guo, B., Pan, Y., Lv, C., and Xu, R., Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes, Plant Growth Regul., 2018, vol. 85, p. 399.

    Article  CAS  Google Scholar 

  12. Pan, R., Jiang, W., Wang, Q., Xu, L., and Zhang, W.Y., Differential response of growth and photosynthesis in diverse cotton genotypes under hypoxia stress, Photosynthetica, 2019, vol. 57, p. 772.

    Article  CAS  Google Scholar 

  13. Goggin, D.E. and Colmer, T.D., Intermittent anoxia induces oxidative stress in wheat seminal roots: assessment of the antioxidant defence system, lipid peroxidation and tissue solutes, Funct. Plant Biol., 2005, vol. 32, p. 495.

    Article  CAS  Google Scholar 

  14. Wang, L., Deng, F., and Ren, W.J., Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period, Field Crops Res., 2015, vol. 180, p. 54.

    Article  Google Scholar 

  15. Shao, C.G., Lan, J.J., Yu, S.E., Liu, N., Guo, R.Q., and She, D.L., Photosynthesis and growth of winter wheat in response to waterlogging at different growth stages, Photosynthetica, 2013 vol. 51, p. 429.

    Article  CAS  Google Scholar 

  16. Nan, Z., Li, C., Yan, Y., Wen, C., Song, A., Wang, H., Chen, S., Jiang, J., and Chen, F., Comparative transcriptome analysis of waterlogging-sensitive and waterlogging-tolerant chrysanthemum morifolium cultivars under waterlogging stress and reoxygenation conditions, Int. J. Mol. Sci., 2018, vol. 19, p. 1455.

    Article  Google Scholar 

  17. Kim, Y., Seo, C.W., Khan, A.L., Mun, B.G., Shahzad, R., Ko, J.W., Yun, B.W., Park, S.K., and Lee, I.J., Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.), BMC Plant Biol., 2018, vol. 18, p. 254.

    Article  CAS  Google Scholar 

  18. Vidoz, M.L., Loreti, E., Mensuali, A., Alpi, A., and Perata, P., Hormonal interplay during adventitious root formation in flooded tomato plants, Plant J., 2010, vol. 63, p. 551.

    Article  CAS  Google Scholar 

  19. Ayano, M., Kani, T., Kojima, M., Sakakibara, H., Kitaoka, T., Kuroha, T., Angeles-Shim, R.B., Kitano, H., Nagai, K., and Ashikari, M., Gibberellin, biosynthesis and signal, transduction is essential for internode elongation in deepwater rice, Plant Cell Environ., 2014, vol. 37, p. 2313.

    Article  CAS  Google Scholar 

  20. Spanu, P., Grosskopf, D.G., Felix, G., and Boller, T., The apparent turnover of 1-aminocyclopropane-1-carboxylate synthase in tomato cells is regulated by protein phosphorylation and dephosphorylation, Plant Physiol., 1994, vol. 106, p. 529.

    Article  CAS  Google Scholar 

  21. Pan, R., Liu, Y., Buitrago, S., Jiang, W., Gao, H., Han, H., Wu, C., Wang, Y., Zhang, W., and Yang, X., Adventitious root formation is dynamically regulated by various hormones in leaf-vegetable sweetpotato cuttings, J. Plant Physiol., 2020, vol. 253, p. 153267.

    Article  CAS  Google Scholar 

  22. Zhou, W., Chen, F., Meng, Y., Chandrasekaran, U., Luo, X., Yang, W., and Shu, K., Plant waterlogging/flooding stress responses: from seed germination to maturation, Plant Physiol. Biochem., 2020, vol. 148, p. 228.

    Article  CAS  Google Scholar 

  23. Tanaka, Y., Sano, T., Tamaoki, M., Nakajima, N., Kondo, N., and Hasezawa S., Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis, Plant Physiol., 2005, vol. 138, p. 2337.

    Article  CAS  Google Scholar 

  24. Ayano, M., Kani, T., Kojima, M., Sakakibara, H., and Ashikari, H., Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice, Plant Cell Environ., 2015, vol. 37, p. 2313.

    Article  Google Scholar 

  25. Abiko, T., Kotula, L., Shiono, K., Malik, A.I., Colmer, T.D., and Nakazono, M., Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays), Plant Cell Environ., 2012, vol. 35, p. 1618.

    Article  CAS  Google Scholar 

  26. Rogers, A., Serbin, S.P., Ely, K.S., Sloan, V.L., and Wullschleger, S.D., Terrestrial biosphere models underestimate photosynthetic capacity and CO2 assimilation in the Arctic, New Phytol., 2017, vol. 216, p. 1090.

    Article  CAS  Google Scholar 

  27. Pinnola, A., Dall’Osto, L., Gerotto, C., Morosinotto, T., and Alboresi, A., Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens, Plant Cell, 2013, vol. 25, p. 3519.

    Article  CAS  Google Scholar 

  28. Ma, N., Zhang, C.L., Li, J., and Li, G.M., Regulation of planting density on source-sink relationship and yield at seed-set stage of rapeseed (Brassica napus L.), Zhongguo You Liao Zuo Wu Xue Bao, 2009, vol. 31, p. 5.

    CAS  Google Scholar 

  29. Lawson, T. and Blatt, M.R., Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency, Plant Physiol., 2014, vol. 164, p. 1556.

    Article  CAS  Google Scholar 

  30. Guan, X.K., Song, L., Wang, T.C., Turner, N.C., and Li, F.M., Effect of drought on the gas exchange, chlorophyll fluorescence and yield of six different-era spring wheat cultivars, J. Agron. Crop Sci., 2015, vol. 201, p. 253.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Bosong Yan for plant preparation and data collection, and Jingzhen Zhang for the chart layout.

Funding

This work was supported by National Key R&D Program of China (2018YFD1000700, 2018YFD1000705, 2019YFD1001300, 2019YFD1001305), Science and Technology Development Plan Project of Jingzhou City, Hubei Province, China (2018-37).

Author information

Authors and Affiliations

Authors

Contributions

H. Han, R. Pan contributed equally to this work.

Corresponding authors

Correspondence to W. Y. Zhang or X. S. Yang.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Pan, R., Buitrago, S. et al. The Physiological Basis of Genotypic Variations in Low-Oxygen Stress Tolerance in the Vegetable Sweet Potato. Russ J Plant Physiol 68, 1236–1246 (2021). https://doi.org/10.1134/S1021443721060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060054

Keywords:

Navigation