Skip to main content

Effect of Functionalized-Carbon Nanotube on Growth Indices in Ocimum basilicum L. Grown in vitro

Abstract

In order to study the effect of phenylalanine-functionalized carbon nanotubes (f-MWCNT) on the parameters of callus induction and variations in antioxidant enzymes activity as well as secondary metabolites biosynthesis of basil (Ocimum basilicum L.), optimum concentrations of functionalized and pristine carbon nanotubes were applied in optimized hormonal culture. Basil hypocotyl fragments were cultured in completely sterile conditions in culture medium with 0, 50, 100 and 200 mg/L concentrations of functionalized and pristine carbon nanotubes. The callus induction frequency Cif and dry matter content (DMC), catalase, polyphenol oxidase (PPO), peroxidase (POD), and L-phenylalanine ammonia-lyase activity were also measured in the present study. Additionally, the content of total phenolics and flavonoids, as well as individual phenolic acids, was quantified. Functionalized MWCNTs exhibited the highest callus induction as well as fresh and dry weight in the concentration, 100 mg/L of f-MWCNT. No significant differences in dry matter content between the levels was observed in this study. Catalase activity was also increased with increasing functionalized and non-functionalized carbon nanotube concentration. The highest activity of PPO, POD, and individual phenolic compounds were observed at 200 mg/L of f-MWCNT, 50 mg/L of pristine MWCNT and 100 mg/L of MWCNT, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Sadegh, H. and Shahryari-ghoshekandi, R., Functionalization of carbon nanotubes and its application in nanomedicine: a review, Nanomed. J., 2015, vol. 2, p. 231.

    CAS  Google Scholar 

  2. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., and Biris, A. S., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 2009, vol. 3, p. 3221.

    Article  CAS  Google Scholar 

  3. Khodakovskaya, M.V., De Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2012, vol. 6, p. 2128.

    Article  CAS  Google Scholar 

  4. Flores, D., Chacón, R., Alvarado, L., Schmidt, A., Alvarado, C., and Chaves, J., Effect of using two different types of carbon nanotubes for blackberry (Rubus adenotrichos) in vitro plant rooting, growth and histology, Am. J. Plant Sci., 2014, vol. 5, p. 3510.

    Article  Google Scholar 

  5. Smirnova, E.A., Gusev, A.A., Zaitseva, O.N., Lazareva, E.M., Onishchenko, G.E., Kuznetsova, E.V., and Kirpichnikov, M.P., Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobryc hisarenaria seedlings, Acta Nat., 2011, vol. 3, p. 99.

    Article  CAS  Google Scholar 

  6. Ghorbanpour, M. and Hadian, J., Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro, Carbon, 2015, vol. 94, p. 749.

    Article  CAS  Google Scholar 

  7. Husen, A. and Siddiqi, K.S., Carbon and fullerene nanomaterials in plant system, J. Nanobiotech., 2014, vol. 12, p. 16.

    Article  Google Scholar 

  8. Sajadi, S., Analysis of the essential oils of two cultivated basil (Ocimum basilicum L.) from Iran, Daru J. Pharm., Sci., 2006, vol. 14, p. 128.

    Google Scholar 

  9. Ch, M.A., Naz, S.B., Sharif, A., Akram, M., and Saeed, M.A., Biological and pharmacological properties of the sweet basil (Ocimum basilicum), J. Pharm. Res. Int., 2015, vol. 7, p. 330.

    Google Scholar 

  10. Grayer, R.J., Kite, G.C., Goldstone, F.J., Bryan, S.E., Paton, A., and Putievsky, E., Infra-specific taxonomy and essential oil chemotypes in sweet basil, Ocimum basilicum, Phytochemistry, 1996, vol. 43, p. 1033.

    Article  CAS  Google Scholar 

  11. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., and Voon, C.H., Synthesis of graphene oxide using modified hummers method: solvent influence, Procedia Eng., 2017, vol. 184, p. 469.

    Article  CAS  Google Scholar 

  12. Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., and Galiotis, C., Chemical oxidation of multi-walled carbon nanotubes, Carbon, 2008, vol. 46, p. 833.

    Article  CAS  Google Scholar 

  13. Mallakpour, S., Abdolmaleki, A., and Borandeh, S., L-phenylalanine amino acid functionalized multi walled carbon nanotube (MWCNT) as a reinforced filler for improving mechanical and morphological properties of poly(vinyl alcohol)/MWCNT composite, Prog. Org. Coat., 2014, vol. 77, p. 1966.

    Article  CAS  Google Scholar 

  14. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, p. 473.

    Article  CAS  Google Scholar 

  15. Benderradji, L., Brini, F., Kellou, K., Ykhlef, N., Djekoun, A., Masmoudi, K., and Bouzerzour, H., Callus induction, proliferation, and plantlets regeneration of two bread wheat (Triticum aestivum L.) genotypes under saline and heat stress conditions, Int. Sch. Res. Not., 2012, vol. 2012, p. 1.

    Article  Google Scholar 

  16. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121.

    Article  CAS  Google Scholar 

  17. Kar, M. and Mishra, D., Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence, Plant Physiol., 1976, vol. 57, p. 315.

    Article  CAS  Google Scholar 

  18. Upadhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N., and Smith, B.N., Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves, J. Plant Physiol., 1985, vol. 121, p. 453.

    Article  CAS  Google Scholar 

  19. Zucker, M., Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue, Plant Physiol., 1965, vol. 40, p. 779.

    Article  CAS  Google Scholar 

  20. Singleton, V.L., Orthofer, R., and Lamuela-Raventós, R.M., Analysis of total phenols and other oxidation substrates and antioxidants by means of olin-ciocalteu reagent, Methods Enzymol., 1999, vol. 299, p. 152.

    Article  CAS  Google Scholar 

  21. Zhishen, J., Mengcheng, T., and Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem., 1999, vol. 64, p. 555.

    Article  CAS  Google Scholar 

  22. Biercuk, M.J., Llaguno, M.C., Radosavljevic, M., Hyun, J.K., Johnson, A.T., and Fischer, J.E., Carbon nanotube composites for thermal management, Appl. Phys. Lett., 2002, vol. 80, p. 2767.

    Article  CAS  Google Scholar 

  23. Ghasempour, M., Iranbakhsh, A., Ebadi, M., and Ardebili, Z.O., Multi-walled carbon nanotubes improved growth, anatomy, physiology, secondary metabolism, and callus performance in Catharanthus roseus: an in vitro study, 3Biotech, 2019, vol. 9, p. 1.

  24. Samadi, S., Saharkhiz, M.J., Azizi, M., Samiei, L., and Ghorbanpour, M., Multi-walled carbon nanotubes stimulate growth, redox reactions and biosynthesis of antioxidant metabolites in Thymus daenensis Celak. in vitro, Chemosphere, 2020, vol. 249, p. 1.

    Article  Google Scholar 

  25. Piao, L., Liu, Q., and Li, Y., Interaction of amino acids and single-wall carbon nanotubes, J. Phys. Chem., 2012, vol. 116, p. 1724.

    CAS  Google Scholar 

  26. Sianipar, M., Kim, S.H., Iskandar, F., and Wenten, I.G., Functionalized carbon nanotube (CNT) membrane: progress and challenges, RSC Adv., 2017, vol. 7, p. 51175.

    Article  CAS  Google Scholar 

  27. Wang, X., Zhou, Z., and Chen, F., Surface modification of carbon nanotubes with an enhanced antifungal activity for the control of plant fungal pathogen, Materials, 2017, vol. 10, p. 1375.

    Article  Google Scholar 

  28. Villagarcia, H., Dervishi, E., de Silva, K., Biris, A.S., and Khodakovskaya, M.V., Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants, Small, 2012, vol. 8, p. 2328.

    Article  CAS  Google Scholar 

  29. Moore, M.N., Do nanoparticles present eco-toxicological risks for the health of the aquatic environment? Environ. Int., 2006, vol. 32, p. 967.

    Article  CAS  Google Scholar 

  30. Pellegrini, L., Rohfritsch, O., Fritig, B., and Legrand, M., Phenylalanine ammonia-lyase in tobacco. Molecular cloning and gene expression during the hypersensitive reaction to tobacco mosaic virus and the response to a fungal elicitor, Plant Physiol., 1994, vol. 106, p. 877.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I would like to express my deep gratitude to professor Jirair Carapetian and Mehran Kolaei for Their valuable and constructive suggestions during the development of this research work, especially in part of Nanotechnology and editing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hosseini Sarghein.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: MWCNT—multi-walled carbon nanotube; f‑MWCNT—functionalized multi-walled carbon nanotube; O‑MWCNT—oxidized multi-walled carbon nanotube.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holghoomi, R., Sarghein, S.H., Khara, J. et al. Effect of Functionalized-Carbon Nanotube on Growth Indices in Ocimum basilicum L. Grown in vitro. Russ J Plant Physiol 68, 958–972 (2021). https://doi.org/10.1134/S1021443721050058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721050058

Keywords: