Skip to main content
Log in

Identification and Characterization of the Interaction between ZmSBEIIb and ZmPAD1 in Maize

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The starch branching enzymes (SBEs) play critical roles in forming branched structures (α-1,6-glycosidic linkages) of starch molecules in maize (Zea mays L.). Here, we use a yeast two-hybrid system to screen for ZmSBEIIb-binding proteins to identify proteins binding to ZmSBEIIb to facilitate a more thorough characterization of ZmSBEIIb. By screening a cDNA expression library, a physical interactor of ZmSBEIIb was identified, which is highly homologous with the α-subunit of 20S proteasome and thus named as ZmPAD1. In order to obtain more detailed information about this interaction, the ZmPAD1 interacting with ZmSBEIIb and thereby impacting proteolytic processes were further studied. First, we determined the interaction strength between ZmPAD1 and different truncated ZmSBEIIb baits in the yeast two-hybrid system; second, we confirmed this interaction with GST pull-down and co-immunoprecipitation assays in vitro and in vivo; third, we applied MG115 to inhibit the function of the proteasome in maize suspension-cultured cells for changing the ZmSBEIIb protein content. In our opinion, the interaction between ZmPAD1 and ZmSBEIIb may play a role leading to ZmSBEIIb degradation by 20S proteasome. These results provide a valuable ZmSBEIIb-binding protein resource for analyzing ZmSBEIIb function and provide new insights into the potential protein regulatory mechanism that controls the function of ZmSBEIIb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Qu, J., Xu, S., Zhang, Z., Chen, G., Zhong, Y., Liu, L., Zhang, R., Xue, J., and Guo, D., Evolutionary, structural and expression analysis of core genes involved in starch synthesis, Sci. Rep., 2018, vol. 8, p. 12736.

    Article  Google Scholar 

  2. Blauth, S.L., Yao, Y., Klucinec, J.D., Shannon, J.C., Thompson, D.B., and Guilitinan, M.J., Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn, Plant Physiol., 2001, vol. 125, p. 1396.

    Article  CAS  Google Scholar 

  3. Scanlon, M.J., Stinard, P.S., James, M.G., Myers, A.M., and Robertson, D.S., Genetic analysis of 63 mutations affecting maize kernel development isolated from Mutator stocks, Genetics, 1994, vol. 136, p. 281.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Subasinghe, R.M., Liu, F., Polack, U.C., Lee, E.A., Emes, M.J., and Tetlow, I.J., Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts, Plant Physiol. Biochem., 2014, vol. 83, p. 168.

    Article  CAS  Google Scholar 

  5. Yao, Y., Thompson, D.B., and Guiltinan, M.J., Maize starch-branching enzyme isoforms and amylopectin structure. In the absence of starch-branching enzyme IIb, the further absence of starch-branching enzyme Ia leads to increased branching, Plant Physiol., 2004, vol. 136, p. 3515.

    Article  CAS  Google Scholar 

  6. Zhao, Y., Li, N., Li, B., Li, Z., Xie, G., and Zhang, J., Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology, Planta, 2015, vol. 241, p. 449.

    Article  CAS  Google Scholar 

  7. Peng, C., Wang, Y., Liu, F., Ren, Y., Zhou, K., Lv, J., Zheng, M., Zhao, S., Zhang, L., Wang, C., Jiang, L., Zhang, X., Guo, X., Bao, Y., and Wan, J., FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm, Plant J., 2014, vol. 77, p. 917.

    Article  CAS  Google Scholar 

  8. Seung, D., Boudet, J., Monroe, J., Schreier, T.B., David, L.C., Abt, M., Lu, K.-J., Zanella, M., and Zeeman, S.C., Homologs of PROTEIN TARGETING TO STARCH control starch granule initiation in Arabidopsis leaves, Plant Cell, 2017, vol. 29, p. 1657.

    Article  CAS  Google Scholar 

  9. Feike, D., Seung, D., Graf, A., Bischof, S., Ellick, T., Coiro, M., Soyk, S., Eicke, S., Mettler-Altmann, T., Lu, K.J., Trick, M., Zeeman, S.C., and Smith, A.M., The starch granule-associated protein EARLY STARVATION1 is required for the control of starch degradation in Arabidopsis thaliana leaves, Plant Cell, 2016, vol. 28, p. 1472.

    Article  CAS  Google Scholar 

  10. Yang, J., Lin, R., Sullivan, J., Hoecker, U., Liu, B., Xu, L., Deng, X.W., and Wang, H., Light regulates COP1-mediated degradation of HFR1, a transcription factor essential for light signaling in Arabidopsis, Plant Cell, 2005, vol. 17, p. 804.

    Article  CAS  Google Scholar 

  11. Ayers, N.A., Wilkinson, D.A., Fitzgerald, T.J., and Carlson, G.M., Self-association of the alpha subunit of phosphorylase kinase as determined by two-hybrid screening, J. Biol. Chem., 1999, vol. 274, p. 35583.

    Article  CAS  Google Scholar 

  12. Groll, M. and Huber, R., Purification, crystallization, and X-ray analysis of the yeast 20S proteasome, Methods Enzymol., 2005, vol. 398, p. 329.

    Article  CAS  Google Scholar 

  13. Voges, D., Zwickl, P., and Baumeister, W., The 26S proteasome: a molecular machine designed for controlled proteolysis, Annu. Rev. Biochem., 1999, vol. 68, p. 1015.

    Article  CAS  Google Scholar 

  14. Biran, A., Myers, N., Adler, J., Broennimann, K., Reuven, N., and Shaul, Y., A 20S proteasome receptor for degradation of intrinsically disordered proteins, bioRxiv, 2017. https://doi.org/10.1101/210898

  15. Kumar Deshmukh, F., Yaffe, D., Olshina, M.A., Ben-Nissan, G., and Sharon, M., The Contribution of the 20S proteasome to proteostasis, Biomolecules, 2019, vol. 9, p. 190.

    Article  Google Scholar 

  16. Collins, G.A. and Goldberg, A.L., The logic of the 26S proteasome, Cell, 2017, vol. 169, p. 792.

    Article  CAS  Google Scholar 

  17. Orlowski, M. and Wilk, S., Ubiquitin-independent proteolytic functions of the proteasome, Arch. Biochem. Biophys., 2003, vol. 415, p. 1.

    Article  CAS  Google Scholar 

  18. Jariel-Encontre, I., Bossis, G., and Piechaczyk, M., Ubiquitin-independent degradation of proteins by the proteasome, Biochim. Biophys. Acta, Rev. Cancer, 2008, vol. 1786, p. 153.

    CAS  Google Scholar 

  19. Touitou, R., Richardson, J., Bose, S., Nakanishi, M., Rivett, J., and Allday, M.J., A degradation signal located in the C-terminus of p21WAF1/CIP1 is a binding site for the C8 α-subunit of the 20S proteasome, EMBO J., 2001, vol. 20, p. 2367.

    Article  CAS  Google Scholar 

  20. Tofaris, G.K., Layfield, R., and Spillantini, M.G., α‑Synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome, FEBS Lett., 2001, vol. 509, p. 22.

    Article  CAS  Google Scholar 

  21. David, D.C., Layfield, R., Serpell, L., Narain, Y., Goedert, M., and Spillantini, M.G., Proteasomal degradation of tau protein: Tau and the proteasome, J. Neurochem., 2002, vol. 83, p. 176.

    Article  CAS  Google Scholar 

  22. Gándara, M.L., López, P., Hernando, R., Castaño, J.G., and Alemany, S., The COOH-terminal domain of wild-type cot regulates its stability and kinase specific activity, Mol. Cell. Biol., 2003, vol. 23, p. 7377.

    Article  Google Scholar 

  23. Asher, G., Bercovich, Z., Tsvetkov, P., Shaul, Y., and Kahana, C., 20S proteasomal degradation of ornithine decarboxylase is regulated by NQO1, Mol. Cell, 2005, vol. 17, p. 645.

    Article  CAS  Google Scholar 

  24. Li, N., Zhang, Z., Zhang, W., and Wei, Q., Calcineurin B subunit interacts with proteasome subunit alpha type 7 and represses hypoxia-inducible factor-1α activity via the proteasome pathway, Biochem. Biophys. Res. Commun., 2011, vol. 405, p. 468.

    Article  CAS  Google Scholar 

  25. Yang, L., Tang, Z., Zhang, H., Kou, W., Lu, Z., Li, X., Li, Q., and Miao, Z., PSMA7 directly interacts with NOD1 and regulates its function, Cell Physiol. Biochem., 2013, vol. 31, p. 952.

    Article  CAS  Google Scholar 

  26. Zhang, Z., Torii, N., Furusaka, A., Malayaman, N., Hu, Z., and Liang, T.J., Structural and functional characterization of interaction between hepatitis B virus X protein and the proteasome complex, J. Biol. Chem., 2000, vol. 275, p. 15157.

    Article  CAS  Google Scholar 

  27. Farrás, R., et al., SKP1-SnRK protein kinase interactions mediate proteasomal binding of a plant SCF ubiquitin ligase, EMBO J., 2001, vol. 20, p. 2742.

    Article  Google Scholar 

  28. Dong, J., Chen, W., Welford, A., and Wandinger-Ness, A., The proteasome α-subunit XAPC7 interacts specifically with Rab7 and late endosomes, J. Biol. Chem., 2004, vol. 279, p. 21334.

    Article  CAS  Google Scholar 

  29. Dächsel, J.C., Lücking, C.B., Deeg, S., Schultz, E., Lalowski, M., Casademunt, E., Corti, O., Hampe, C., Patenge, N., Vaupel, K., Yamamoto, A., Dichgans, M., Brice, A., Wanker, E.E., Kahle, P.J., et al., Parkin interacts with the proteasome subunit α4, FEBS Lett., 2005, vol. 579, p. 3913.

    Article  Google Scholar 

  30. Albornoz, N., Bustamante, H., Soza, A., and Burgos, P., Cellular responses to proteasome inhibition: molecular mechanisms and beyond, Int. J. Mol. Sci., 2019, vol. 20, p. 3379.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank our teacher Professor Yingdian Wang for his selfless support and useful discussions.

Funding

This study is supported by grants from the Natural Science Foundation of Guangdong Province (project no. 2017A030313206), and National Innovation Training Project (project no. 201813177001) in China.

Author information

Authors and Affiliations

Corresponding author

Correspondence to C. Chen.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Abbreviations: AAC—apparent amylose content; DAP—days after pollination; DBE—starch debranching enzyme; ESV1—early starvation 1; FLO6—floury endosperm 6; GST—glutathione-S-transferase; HIF-1α—hypoxia-inducible factor-1α; IPTG—isopropyl-β-D-thiogalactopyranoside; ISA1—isoamylase1; LESV1—like ESV1; MG115—carbobenzoxyl-leucinyl-leucinyl-norvalinal-H; NB—nutrient broth; NOD1 nucleotide-binding oligomerization domain-containing protein 1; ONPG—o-nitrophenyl-β-galactopyranoside; PAGE—polyacrylamide gel electrophoresis; PSMA3—proteasome subunit alpha 3; Ppase—ADP-Glc pyrophosphorylase; PTST1—protein targeting to starch; SBE—starch branching enzyme; SS—starch synthase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhang, J., Qin, M. et al. Identification and Characterization of the Interaction between ZmSBEIIb and ZmPAD1 in Maize. Russ J Plant Physiol 68, 66–73 (2021). https://doi.org/10.1134/S1021443721010052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721010052

Keywords: