Effect of (+) and (–) Usnic Acid on Physiological, Biochemical, and Cytological Characteristics of Allium fistulosum Seeds


The effect of (+) and (–)-usnic acid (UA) on the physiological, biochemical, and cytological characteristics of Allium fistulosum L. seedlings was studied. It was shown that germination of seeds in the medium supplemented with both enantiomers of UA at concentrations of 62.5–1000 μM led to a decrease in laboratory germination, an inhibition of growth processes, a slowing of the mitotic activity of root meristems, and tissue depigmentation. A dose-dependent increase in the frequency of chromosomal aberrations and the degree of damage to nuclear DNA in cells was shown, which indicates the potentially genotoxic and mutagenic effect of the studied UA enantiomers. However, (–)-UA induced a greater number of atypical DNA comets than the (+)-enantiomer, which may indicate its stronger effect on DNA fragmentation in cells. An increase in the activity of antioxidant enzymes and a decrease in the content of flavonoids were observed under the action of both UA enantiomers against the background of the accumulation of lipid peroxidation products in seedlings’ cells, which indicates the development of oxidative stress. At the same time, no significant differences between the activity of (+) and (–)-UAs at the level of physiological and biochemical parameters of seedlings were revealed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    Araújo, A.A.S., de Melo, M.G.D., Rabelo, T.K., Nunes, P.S., Santos, S.L., Serafini, M.R., Santos, M.R.V., Quintans-Júnior, L.J., and Gelain, D.P., Review of the biological properties and toxicity of usnic acid, Nat. Prod. Res., 2015, vol. 29, p. 1. https://doi.org/10.1080/14786419.2015.1007455

    CAS  Article  Google Scholar 

  2. 2

    Galanty, A., Pasko, P., and Podolak, I., Enantioselective activity of usnic acid: a comprehensive review and future perspectives, Phytochem. Rev., 2019, vol. 18, p. 527. https://doi.org/10.1007/s11101-019-09605-3

    CAS  Article  Google Scholar 

  3. 3

    Dalvi, R.R., Singh, B., and Salunkhe, D.K., Physiological and biochemical investigations on the phytotoxicity of usnic acid, Phyton, 1972, vol. 29, p. 63.

    CAS  Google Scholar 

  4. 4

    Kytöviita, M.M. and Stark, S., No allelopathic effect of the dominant forest-floor lichen Cladonia stellaris on pine seedlings, Funct. Ecol., 2009, vol. 23, p. 435. https://doi.org/10.1111/j.1365-2435.2008.01508.x

    Article  Google Scholar 

  5. 5

    Lechowski, Z., Mej, E., and Bialczyk, J., Accumulation of biomass and some macroelements in tomato plants grown in media with (+)-usnic acid, Environ. Exp. Bot., 2006, vol. 56, p. 239. https://doi.org/10.1016/j.envexpbot.2005.03.001

    CAS  Article  Google Scholar 

  6. 6

    Lasceve, G. and Gaugain, F., Effects of usnic acid on sunflower and maize plantlets, J. Plant Physiol., 1990, vol. 136, p. 723. https://doi.org/10.1016/S0176-1617(11)81352-0

    CAS  Article  Google Scholar 

  7. 7

    Fiskesjo, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, p. 99. https://doi.org/10.1111/j.1601-5223.1985.tb00471.x

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Prokopiev, I.A., Filippov, E.V., Filippova, G.V., and Gladkina, N.P., Genotoxicity of usnic-acid enantiomers in vitro in human peripheral-blood lymphocytes, Cell Tissue Biol., 2017, vol. 11, no. 2, p. 141. https://doi.org/10.1134/S1990519X17020031

    Article  Google Scholar 

  9. 9

    Huneck, S. and Yoshimura, I., Identification of Lichen Substances, Berlin: Springer-Verlag, 1996.

    Google Scholar 

  10. 10

    Jin, J., Rao, Y., Bian, X., Zeng, A., and Yang, G., Solubility of (+)-usnic acid in water, ethanol, acetone, ethyl acetate and n-hexane, J. Solution Chem., 2013, vol. 42, p. 1018. https://doi.org/10.1007/s10953-013-0010-1

    CAS  Article  Google Scholar 

  11. 11

    Huneck, S. and Schreiber, K., Wachstumsregulatorische eigenschaften von flechten-und moos-inhaltsstoffen, Phytochemistry, 1972, vol. 11, p. 2429.

    CAS  Article  Google Scholar 

  12. 12

    Pausheva, Z.P., Praktikum po tsitologii rastenii (Practical Manual on the Plant Cytology), Moscow: Kolos, 1974.

  13. 13

    Gichner, T., Patkova, Z., Szakova, J., and Demnerova, K., Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves, Mutat. Res., 2004, vol. 559, p. 49. https://doi.org/10.1016/j.mrgentox.2003.12.008

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Zganataev, A.K., Nikitina, V.A., Voronina, E.S., and Durnev, A.S., Assessment of DNA damages by DNA-comet assay, Prikl. Toksikol., 2011, vol. 2, no. 4, p. 28.

    Google Scholar 

  15. 15

    Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, p. 309. https://doi.org/10.1104/pp.59.2.309

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Lebedeva, O.V., Ugarova, N.N., and Berezin, I.V., Kinetic of the oxidation reaction of o-dianisidine by hydrogen peroxide in the presence of horseradish peroxidase, Biokhimiya (Moscow), 1977, vol. 42, p. 1372.

    CAS  Google Scholar 

  17. 17

    Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, p. 121. https://doi.org/10.1016/s0076-6879(84)05016-3

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Rogozhin, V.V., Metody biokhimicheskikh issledovanii (Methods of Biochemical Studies), Yakutsk: Yakut. Gos. Univ., 1999.

  19. 19

    Lichtenthaler, H.K., Chlorophylls and carotenoids pigments of photosynthetic biomembranes, Method. Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    CAS  Article  Google Scholar 

  20. 20

    Vladimirov, Yu.A. and Archakov, A.I., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1972.

  21. 21

    Öztürk, S., Güvenç, S., Arikan, N., and Yilmaz, Ö., Effect of usnic acid on mitotic index in root tips of Allium cepa L, Lagascalia, 1999, vol. 21, p. 47.

    Google Scholar 

  22. 22

    Polat, Z., Aydın, E., Türkez, H., and Aslan, A., In vitro risk assessment of usnic acid compound, Toxicol. Ind. Health, 2013, vol. 32, p. 468. https://doi.org/10.1177/0748233713504811

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Koparal, A.T., Tüylü, B.A., and Türk, H., In vitro cytotoxic activities of (+)-usnic acid and (–)-usnic acid on V79, A549, and human lymphocyte cells and their non-genotoxicity on human lymphocytes, Nat. Prod. Res., 2006, vol. 20, p. 1300. https://doi.org/10.1080/14786410601101910

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Romagni, J.G., Meazza, G., Nanayakkara, N.P.D., and Dayan, F.E., The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase, FEBS Lett., 2000, vol. 480, p. 301. https://doi.org/10.1016/s0014-5793(00)01907-4

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Endo, T., Takahagi, T., Kinoshita, Y., Yamamoto, Y., and Sato, F., Inhibition of photosystem II of spinach by lichen-derived depsides, Biosci. Biotechnol. Biochem., 1998, vol. 62, p. 2023. https://doi.org/10.1271/bbb.62.2023

    CAS  Article  PubMed  Google Scholar 

  26. 26

    Abo-Khatwa, A.N., Al-Robai, A.A., and Al-Jawhari, D.A., Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria, Nat. Toxins, 1996, vol. 4, p. 96. https://doi.org/10.1002/19960402NT7

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, V.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, no. 2, p. 141.

    CAS  Article  Google Scholar 

  28. 28

    Kohlhardt-Floehr, C., Boehm, F., Troppens, S., Lademann, J., and Truscott, T.G., Prooxidant and antioxidant behavior of usnic acid from lichens under UVB-light irradiation—studies on human cells, J. Photochem. Photobiol., B, 2010, vol. 101, p. 97. https://doi.org/10.1016/j.jphotobiol.2010.06.017

    CAS  Article  Google Scholar 

  29. 29

    Prokop’ev, I.A., Filippov, E.V., Filippova, G.V., and Zhanataev, A.K., Pro/antigenotoxic activity of usnic acid enantiomers in vitro, Bull. Exp. Biol. Med., 2018, vol. 164, no. 4, p. 312. https://doi.org/10.1007/s10517-018-3979-z

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Latkowska, E., Bialczyk, J., Lechowskit, Z., and Czaja-Prokop, U., Responses in tomato roots to stress caused by exposure to (+)-usnic acid, Allelopathy J., 2008, vol. 2l, p. 239.

    Google Scholar 

Download references


This study was carried out as part of the state tasks of the Institute of Biological Problems of the Cryolithozone (Siberian Branch, Russian Academy of Sciences) for 2017–2020 no. AAAA-A17-117020110055-3 Development of Biological Products from Tissues of Plants and Animals of Yakutia Based on the Study of the Peculiarities of Their Biochemical Composition and Mechanisms of Adaptation to the Conditions of the North and no. AAAA-A17-117020110056-0 Fundamental and Applied Aspects of the Study of Plant Diversity in North and Central Yakutia.

Author information



Corresponding author

Correspondence to I. A. Prokopiev.

Ethics declarations


This article does not contain any research involving humans or animals as research objects.


The authors declare that they have no conflict of interest.

Additional information

Translated by M. Shulskaya

Abbreviations: CAT—catalase; MI—mitotic index; POX—peroxidase; SOD—superoxide dismutase; UA—usnic acid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokopiev, I.A., Filippova, G.V. Effect of (+) and (–) Usnic Acid on Physiological, Biochemical, and Cytological Characteristics of Allium fistulosum Seeds. Russ J Plant Physiol 67, 1046–1053 (2020). https://doi.org/10.1134/S102144372006014X

Download citation


  • Allium fistulosum
  • usnic acid
  • phytotoxicity
  • genotoxicity
  • oxidative stress