Changes to Intracellular Ca2+ and Its Sensors Triggered by NaCl Stress in Pears

Abstract

The responses of Ca2+ signaling mechanism to salt stress in pears are poorly understood. In this study, we investigated the difference in the Ca2+ signal responses to NaCl stress in two pear species (Pyrus betulaefolia Bunge. and P. bretschneideri Rehd. cv. ‘Xuehua’). Pear protoplasts were treated with 100 mM NaCl alone and NaCl combined with various chemical agents before changes in intracellular Ca2+ levels and the expression of Ca2+ sensor-related genes were analyzed. NaCl stress caused elevated Ca2+ levels in protoplasts labeled with the calcium indicator Fluo-3/AM. The Ca2+ signal increased earlier in P. betulaefolia than in the ‘Xuehua’ cultivar. The cytoplasmic Ca2+ bursts induced by NaCl stress were significantly constrained by the chemical agents supplied to both species. The plasma-membrane Ca2+ channel inhibitor LaCl3 and extracellular Ca2+ chelator EGTA had greater inhibitory effects than the intracellular Ca2+ chelator BAPTA/AM. Under NaCl stress, upregulation of PbCBL10 and genes in the classes PbCDPK and PbCIPK occurred more quickly in P. betulaefolia than the ‘Xuehua’ cultivar. In conclusion, NaCl stress stimulates Ca2+ signaling in pear cells, the ions for which are taken from extracellular and intracellular Ca2+ stores. Furthermore, the accumulation of cytoplasmic Ca2+ mediates early expression of Ca2+ sensor-related genes, especially PbCDPK1. Thus the response of Ca2+ signal plays pivotal roles, which enhance the salt tolerance of pear.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFFERENCES

  1. 1

    Szabo, S., Hossain, M.S., Adger, W.N., Matthews, Z., Ahmed, S., Lázár, A.N., and Ahmad, S., Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh, Sustain. Sci., 2016, vol. 11, p. 411.

    Article  Google Scholar 

  2. 2

    Liang, W., Ma, X., Wan, P., and Liu, L., Plant salt-tolerance mechanism: a review, Biochem. Biophys. Res. Commun., 2018, vol. 495, p. 286.

    CAS  Article  Google Scholar 

  3. 3

    Elkelish, A.A., Alnusaire, T.S., Soliman, M.H., Gowayed, S., Senousy, H.H., and Fahad, S., Calcium availability regulates antioxidant system, physio-biochemical activities and alleviates salinity stress mediated oxidative damage in soybean seedlings, J. Appl. Bot. Food Qual., 2019, p. 258.

  4. 4

    Bush, D.S., Effects of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells, Planta, 1996, vol. 199, p. 89.

    CAS  Article  Google Scholar 

  5. 5

    Pauly, N., Knight, M. R., Thuleau, P., Graziana, A., Muto, S., Ranjeva, R. and Mazars, C., The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells, Cell Calcium, 2001, vol. 30, p. 413.

    CAS  Article  Google Scholar 

  6. 6

    Stael, S., Wurzinger, B., Mair, A., Mehlmer, N., Vothknecht, U.C., and Teige, M., Plant organellar calcium signalling: an emerging field, J. Exp. Bot., 2012, vol. 63, p. 1525.

    CAS  Article  Google Scholar 

  7. 7

    Dubrovina, A.S., Aleynova, O.A., Ogneva, Z.V., Suprun, A.R., Ananev, A.A., and Kiselev, K.V., The effect of abiotic stress conditions on expression of calmodulin (CaM) and calmodulin-like (CML) genes in wild-growing grapevine Vitis amurensis, Plants, 2019, vol. 8, p. 602.

    CAS  Article  Google Scholar 

  8. 8

    Qiu, Q., Guo, Y., Dietrich, M.A., Schumaker K.S., and Zhu, J., Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, p. 8436.

    CAS  Article  Google Scholar 

  9. 9

    Ma, L., Ye, J., Yang Y., Lin, H., Yue, L., Luo, J., Yu, L., Fu, H., and Liu, X., The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress, Dev. Cell, 2019, vol. 48, p. 697.

    CAS  Article  Google Scholar 

  10. 10

    Ma, S. and Wu, W., AtCPK23 functions in Arabidopsis responses to drought and salt stresses, Plant Mol. Biol., 2007, vol. 65, p. 511.

    CAS  Article  Google Scholar 

  11. 11

    Dubrovina, A.S. and Kiselev, K.V., The role of calcium-dependent protein kinase genes VaCPK1 and VaCPK26 in the response of Vitis amurensis (in vitro) and Arabidopsis thaliana (in vivo) to abiotic stresses, Russ. J. Genet., 2019, vol. 55, p. 319.

    CAS  Article  Google Scholar 

  12. 12

    Tang, J., Lin, J., Li, H., Li, X, Yang, Q., Cheng, Z., and Chang, Y., Characterization of CIPK family in Asian pear (Pyrus bretschneideri Rehd) and co-expression analysis related to salt and osmotic stress responses, Front. Plant Sci., 2016, vol. 7, p. 1361.

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Okubo, M., Furukawa, Y., and Sakuratani, T., Growth, flowering and leaf properties of pear cultivars grafted on two Asian pear rootstock seedlings under NaCl irrigation, Sci. Hortic., 2000, vol. 85, p. 91.

    CAS  Article  Google Scholar 

  14. 14

    Duan, Y., Tian, C., Song Y., and Li L., In vitro culture and rapid propagation of ‘Xuehua’ pear, J. Shanxi Agri-c. Univ., Nat. Sci. Ed., 2014, vol. 34, p. 464.

    CAS  Google Scholar 

  15. 15

    Pan, Z., Studies on the culture, regeneration and fusion of protoplast in apple, Extended Abstract of Cand. Sci. (Biol.) Dissertation, PhD Thesis, Wuhan: Huazhong Agricu-ltural Univ., 1998.

  16. 16

    Horváth, E., Protoplast isolation from Solanum lycope-rsicum L. leaf tissues and their response to short-term NaCl treatment, Acta Biol. Szeged, 2009, vol. 53, p. 83.

  17. 17

    Liu, Y., Wang, Y., Li, J., and Li, L., Responses of intracellular Ca2+ and its sensors to Venturia nashicola infection in pear (Pyrus bretschneideri) with differing resistance, Sci. Hortic., 2019, vol. 243, p. 552.

    CAS  Article  Google Scholar 

  18. 18

    Chang, S., Puryear, J., and Cairney, J., A simple and efficient method for isolating RNA from pine trees, Plant Mol. Biol. Rep., 1993, vol. 11, p. 113.

    CAS  Article  Google Scholar 

  19. 19

    Livaka, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method, Methods, 2001, vol. 25, p. 402.

    Article  Google Scholar 

  20. 20

    Tang, J., Lin, J., Li, X., Yang, Q., Cheng, Q., Cheng, Z., and Chang, Y., Characterization and expression profiling analysis of calmodulin genes in response to salt and osmotic stresses in pear (Pyrus bretschneideri Rehd.) and in comparison with Arabidopsis, BioMed Res. Int., 2017, vol. 2017: 7904162.

    PubMed  PubMed Central  Google Scholar 

  21. 21

    Xu, Y., Lin, J., Li, X., and Chang, Y., Identification and expression analysis under abiotic stresses of the CBL gene family in pear, Sci. Agric. Sin., 2015, vol. 48, p. 735.

    CAS  Google Scholar 

  22. 22

    Sun, J, Wang, M., Ding, M., Deng, S., Liu, M., Lu, C., Zhou, X., Shen, X., Zheng, X., and Zhang, Z., H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells, Plant Cell Enviro-n., 2010, vol. 32, p. 943.

    Article  Google Scholar 

  23. 23

    Mohammed, A., Kader, S.L., Thorsten, S., Dortje G., and Yemelyanov, V., Sodium sensing induces different changes in free cytosolic calcium concentration and pH in salt-tolerant and -sensitive rice (Oryza sativa) cultivars, Physiol. Plant., 2007, vol. 130, p. 99.

    Article  Google Scholar 

  24. 24

    Knight, H., Trewavas, A.J., and Knight, M.R., Calcium signalling in Arabidopsis thaliana responding to drought and salinity, Plant J., 1997, vol. 12, p. 1067.

    CAS  Article  Google Scholar 

  25. 25

    Zhang, X., Shen, Z., Sun, J., Yu, Y., Deng, S., Li, Z., Sun, C., Zhang, J., Zhao, R., Shen, X., and Chen, S., NaCl-elicited, vacuolar Ca2+ release facilitates prolonged cytosolic Ca2+ signaling in the salt response of Populus euphratica cells, Cell Calcium, 2015, vol. 57, p. 348.

    CAS  Article  Google Scholar 

  26. 26

    Yuenyon, W., Chinpongpanich, A., Comai, L., Chadchawan, S., and Buaboocha, T., Downstream components of the calmodulin signaling pathway in the rice salt stress response revealed by transcriptome profiling and target identification, BMC Plant Biol., 2018, vol. 18, p. 335.

    Article  Google Scholar 

  27. 27

    Zhou, S., Jia, L., Chu, H., Wu, D., Peng, X., Liu, X., Zhang, J., and Zhao, J., Arabidopsis CaM1 and CaM4 promote nitric oxide production and salt resistance by inhibiting S-nitrosoglutathione reductase via direct binding, PLoS Genet., 2016, vol. 12: e1006255.

    Article  Google Scholar 

  28. 28

    Dubrovina, A.S., Kiselev, K.V., and Khristenko, V.S., Expression of calcium-dependent protein kinase (CDPK) genes under abiotic stress conditions in wild-growing grapevine Vitis amurensis, Plant Physiol., 2013, vol. 170, p. 1494.

    Article  Google Scholar 

  29. 29

    Yang, Y., Zhang, C., Tang, R., Xu, H., and Lan, W., Calcineurin B-like proteins CBL4 and CBL10 mediate two independent salt tolerance pathways in Arabidopsis, Int. J. Mol. Sci., 2019, vol. 20, p. 2421.

    Article  Google Scholar 

  30. 30

    Nath, M., Bhatt, D., Jain, A., Saxena, S.C., Saifi, S.K., Yadav, S., Negi, M., Prasad, R., and Tuteja, N., Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana, Environ. Exp. Bot., 2019, vol. 161, p. 265.

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the Key Project of the Key Research and Development Program of Shanxi Province, China (project nos. 201703D 221015-2 and 201703D211001).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to J. Li or L. Li.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: 6-BA—6-benzylaminopurine; CaM—calmodulin, CBL—calcineurin B-like protein; CDPK—calcium-dependent protein kinase; CIPK—CBL-interacting protein kinase; CPW—cell protoplast wash; FDA—fluorescein diacetate; IBA—indole-3-butytric acid; LaCl3—lanthanum chloride; SOS—salt-overly-sensitive.

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xie, B., Liu, Y. et al. Changes to Intracellular Ca2+ and Its Sensors Triggered by NaCl Stress in Pears. Russ J Plant Physiol 67, 1144–1151 (2020). https://doi.org/10.1134/S1021443720060126

Download citation

Keywords:

  • Pyrus betulaefolia
  • Pyrus bretschneideri
  • NaCl stress
  • cytoplasmic Ca2+
  • Ca2+ sensor -related genes