Comparative Transcriptome Analysis Profiles of Two Mulberry Varieties under Cadmium Stress

Abstract

This paper is try to investigate the molecular mechanisms of cadmium (Cd) response in mulberry (Morus alba L.) leaf. Transcriptome sequencing technology is used to analyze the profiles of low-Cd mulberry Zhehulusang (zhls) and high-Cd mulberry Xianmianzao (xmz) under Cd stress. Approximately 195 million clean reads were obtained, 2785 and 1211 differentially expressed genes (DEGs) were identified in zhls and xmz. The DEGs of zhls enriched in the pathway of flavonoid biosynthesis, photosynthesis, carbon fixation in photosynthetic organisms. The DEGs of xmz enriched in the pathway of flavonoid biosynthesis, plant-pathogen interaction, phenylpropanoid biosynthesis. Through comparative analyses, the flavonoids may be the effective antioxidants conserved in mulberry under Cd stress. These information may be useful for further studies on investigating the molecular mechanisms of mulberry response to Cd stress.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Peralta-Videa, J.R., Lopez, M.L., Narayan, M., Saupe, G., and Gardea-Torresdey, J., The biochemistry of environmental heavy metal uptake by plants: implications for the food chain, Int. J. Biochem. Cell Biol., 2009, vol. 41, p. 1665.

    CAS  Article  Google Scholar 

  2. 2

    Jiang, Y.B., Huang, R.Z., Yan, X.P., Jia, C.H., Jiang, S.M., and Long, T.Z., Mulberry for environmental protection, Pak. J. Bot., 2017, vol. 49, p. 78.

    Google Scholar 

  3. 3

    Huang, R.Z., Jiang, Y.B., Jia, C.H., Jiang, S.M., and Yan, X.P., Subcellular distribution and chemical forms of cadmium in Morus alba L., Int. J. Phytoremediation, 2018, vol. 20, p. 448.

    CAS  Article  Google Scholar 

  4. 4

    Lin, Y.F. and Aarts, M.G., The molecular mechanism of zinc and cadmium stress response in plants, Cell. Mol. Life Sci., 2012, vol. 69, p. 3187.

    CAS  Article  Google Scholar 

  5. 5

    He, N., Zhang, C., Qi, X., Zhao, S., Tao, Y., Yang, G., Lee, T.H., Wang, X., Cai, Q., Li, D., et al., Draft genome sequence of the mulberry tree Morus notabilis,Nat. Commun., 2013, vol. 4, p. 2445.

    Article  Google Scholar 

  6. 6

    Laetitia, P.B., Nathalie, L., Alain, V., and Cyrille, F., Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, Plant J., 2002, vol. 32, p. 539.

    Article  Google Scholar 

  7. 7

    Lane, T.W., Saito, M.A., George, G.N., Pickering, I.J., Prince, R.C., and Morel, F.M.M., A cadmium enzyme from a marine diatom, Nature, 2005, vol. 435, p. 42.

    CAS  Article  Google Scholar 

  8. 8

    Liu, X.M., Kim, K.E., Kim, K.C., Nguyen, X.C., Han, H.J., Jung, M.S., Kim, H.S., Kim, S.H., Park, H.C., Yun, D.J., et al., Cadmium activates Arabidops-is MPK3 and MPK6 via accumulation of reactive oxygen species, Phytochemistry, 2010, vol. 71, p. 614.

    CAS  Article  Google Scholar 

  9. 9

    Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H., Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADP-H oxidase, Plant Cell, 2007, vol. 19, p. 1065.

    CAS  Article  Google Scholar 

  10. 10

    Nicole, S.P., Paul, B.L., Stephen, D.E., Deborah, L.D.L., Mitch, M.L., David, F.G., David, E., and Leon, V.K., The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens,Proc. Natl. Acad. Sci. USA, 2000, vol. 97, p. 4956.

    Article  Google Scholar 

  11. 11

    Jozefczak, M., Remans, T., Vangronsveld, J., and Cuypers, A., Glutathione is a key player in metal-induced oxidative stress defenses, Int. J. Mol. Sci., 2012, vol. 13, p. 3145.

    CAS  Article  Google Scholar 

  12. 12

    Wójcik, M. and Tukiendorf, A., Glutathione in adaptation of Arabidopsis thaliana to cadmium stress, Biol. Plant., 2011, vol. 55, p. 125.

  13. 13

    Pomponi, M., Censi, V., Di Girolamo, V., De Paolis, A., di Toppi, L.S., Aromolo, R., Costantino, P., and Cardarelli, M., Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot, Planta, 2006, vol. 223, p. 180.

    CAS  Article  Google Scholar 

  14. 14

    Lee, S., Moon, J.S., Ko, T.S., Petros, D., Goldsbrough, P.B., and Korban, S.S., Overexpression of Arabid-opsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress, Plant Physiol., 2003, vol. 131, p. 656.

    CAS  Article  Google Scholar 

  15. 15

    Fan, W., Guo, Q., Liu, C., Liu, X., Zhang, M., Long, D., Xiang, Z., and Zhao, A., Two mulberry phytochelatin synthase genes confer zinc/cadmium tolerance and accumulation in transgenic Arabidopsis and tobacco, Gene, 2018, vol. 645, p. 95.

    CAS  Article  Google Scholar 

  16. 16

    Cobbett, C. and Goldsbrough, P., Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol., 2002, vol. 53, p. 159.

    CAS  Article  Google Scholar 

  17. 17

    Williams, L.E. and Mills, R.F., P(1B)-ATPases—an ancient family of transition metal pumps with diverse functions in plants, Trends Plant Sci., 2005, vol. 10, p. 491.

    CAS  Article  Google Scholar 

  18. 18

    Mills, R.F., Krijger, G.C., Baccarini, P.J., Hall, J.L., and Williams, L.E., Functional expression of AtHM-A4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass, Plant J., 2003, vol. 35, p. 164.

    CAS  Article  Google Scholar 

  19. 19

    Wong, C.K.E. and Cobbett, C.S., HMA P-type ATPa-ses are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana,New Phytol., 2008, vol. 181, p. 71.

    Article  Google Scholar 

  20. 20

    Gravot, A., Lieutaud, A., Verret, F., Auroy, P., Vavasseur, A., and Richaud, P., AtHMA3, a plant P1B‑ATPas-e, functions as a Cd/Pb transporter in yeast, FEBS Lett., 2004, vol. 561, p. 22.

    CAS  Article  Google Scholar 

  21. 21

    Kim, D.Y., Bovet, L., Maeshima, M., Martinoia, E., and Lee, Y., The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance, Plant J., 2007, vol. 50, p. 207.

    CAS  Article  Google Scholar 

  22. 22

    Shahzad, Z., Gosti, F., Frérot, H., Lacombe, E., Roosens, N., Saumitou-Laprade, P., and Berthomieu, P., The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri,PLoS Genet., 2010, vol. 6: e1000911.

    Article  Google Scholar 

  23. 23

    Laetitia, P.B., Nathalie, L., Alain, V., and Cyrille, F., Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status, Plant J., 2002, vol. 32, p. 539.

    Article  Google Scholar 

  24. 24

    Zhou, M., Zheng, S., Liu, R., Lu, J., Lu, L., Zhang, C., Liu, Z., Luo, C., Zhang, L., and Wu, Y., Comparative analysis of root transcriptome profiles between low- and high-cadmium-accumulating genotypes of wheat in response to cadmium stress, Funct. Integr. Genomics, 2019, vol. 19, p. 281.

    CAS  Article  Google Scholar 

  25. 25

    Michalak, A., Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress, Pol. J. Environ. Stud., 2006, vol. 15, p. 523.

    CAS  Google Scholar 

  26. 26

    Weber, M., Trampczynska, A., and Clemens, S., Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri,Plant Cell Env-iron., 2006, vol. 29, p. 950.

    CAS  Article  Google Scholar 

  27. 27

    Feng, J., Jia, W., Lu, S., Bao, H., Miao, F., Zhang, X., Wang, J., Li, J., Li, D., Zhu, C., et al., Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes, Plant Biotechnol. J., 2018, vol. 16, p. 558.

    CAS  Article  Google Scholar 

  28. 28

    Zhou, Q., Guo, J.J., He, C.T., Shen, C., Huang, Y.Y., Chen, J.X., Guo, J.H., Yuan, J.G., and Yang, Z.Y., Comparative transcriptome analysis between low- and high-cadmium-accumulating genotypes of pakchoi (Brassica chinensis L.) in response to cadmium stress, Environ. Sci. Technol., 2016, vol. 50, p. 6485.

    CAS  Article  Google Scholar 

  29. 29

    Gill, S.S., Khan, N.A., and Tuteja, N., Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.), Plant Sci., 2012, vol. 182, p. 112.

    CAS  Article  Google Scholar 

  30. 30

    Chugh, L.K. and Sawhney, S.K., Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium, Plant Physiol. Biochem., 1999, vol. 37, p. 297.

    CAS  Article  Google Scholar 

Download references

Funding

This study was funded by China Agriculture Research System (project no. CARS-18-SYZ12) and the Science and Technology Planning Project of Hunan Province, China (project no. 2015 SK2041).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Jiang.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviation: Cd—cadmium; CDPKs—calcium-dependent protein kinases; CDF—cation diffusion facilitator; DEGs—differentially expressed genes; GO—gene ontology; GSH—glutathione; KEGG—Kyoto encyclopedia of genes and genomes; MAPKs—mitogen-activated protein kinase; MTs—metallothioneins; MTP—metal tolerance protein; NCBI—national center for biotechnology information; PCs—phytochelatins; PCS—phytochelatin synthase.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, S.M., Huang, R.Z., Jiang, Y.B. et al. Comparative Transcriptome Analysis Profiles of Two Mulberry Varieties under Cadmium Stress. Russ J Plant Physiol 67, 1126–1134 (2020). https://doi.org/10.1134/S1021443720060096

Download citation

Keywords:

  • Morus alba
  • cadmium
  • transcriptome
  • gene regulation