Skip to main content
Log in

Shift in Expression of the Genes of Primary Metabolism and Chloroplast Transporters in Chlamydomonas reinhardtii under Different Trophic Conditions

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Chlamydomonas reinhardtii P.A. Dangeard is a unicellular green alga capable to assimilate acetate. C. reinhardtii growth and metabolism distinctly depend on trophic conditions. Its influence on batch culture interferes with changes in the medium composition and metabolism of microalgae occurring during culture growth. The aim of this work was to estimate the effect of acetate on changes in the expression of 32 genes encoding enzymes of central metabolism and plastid transporters during growth of batch cultures of C. reinhardtii cc-124. In autotrophic conditions, transcription profiles considerably differed from the profiles in the presence of acetate. The strongest influence of trophic conditions was observed in the log phase of growth. In the presence of acetate, a more intense expression of gene ACS2 encoding plastid acetyl-CoA synthase and of the genes encoding subunits of enzymes directing acetyl groups to the synthesis of fatty acids was recorded. Elevated expression of genes PCK1 and PPT1 under mixotrophic conditions may be corresponded to the entry of acetate carbon to gluconeogenesis. In the presence of acetate, a high expression level of the starch metabolism genes was observed. Autotrophic conditions were notable for an elevated accumulation of transcripts of the genes encoding subunits of citrate lyase, which may be responsible for an outflow of acetyl groups from the Krebs cycle. Moreover, a higher level of expression was shown for genes of plastid transporters participating in the export of sugars from plastids, which is associated with the redistribution of reducing power in the cell. It was concluded that, on the level of transcription, similarity between mixotrophic and autotrophic cultures becomes more pronounced in the course of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Harris, E., Stern, D., and Witman, G., The Chlamydomonas Sourcebook, Amsterdam: Elsevier, 2009.

    Google Scholar 

  2. Johnson, X. and Alric, J., Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii,J. Biol. Chem., 2012, vol. 287, p. 26445. https://doi.org/10.1074/jbc.m112.370205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Johnson, X. and Alric, J., Central carbon metabolism and electron transport in Chlamydomonas reinhardtii: metabolic constraints for carbon partitioning between oil and starch, Eukaryotic Cell, 2013, vol. 12, p. 776. https://doi.org/10.1128/ec.00318-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Heifetz, P., Förster, B., Osmond, C., Giles, L., and Boynton, J., Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses, Plant Physiol., 2000, vol. 122, p. 1439. https://doi.org/10.1104/pp.122.4.1439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fischer, B., Wiesendanger, M., and Eggen, R., Growth condition-dependent sensitivity, photodamage and stress response of Chlamydomonas reinhardtii exposed to high light conditions, Plant Cell Physiol., 2006, vol. 47, p. 1135.

    Article  CAS  Google Scholar 

  6. Fett, J. and Coleman, J., Regulation of periplasmic carbonic anhydrase expression in Chlamydomonas reinhardtii by acetate and pH, Plant Physiol., 1994, vol. 106, p. 103.

    Article  CAS  Google Scholar 

  7. Fan, J., Yan, C., Andre, C., Shanklin, J., Schwender, J., and Xu, C., Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii,Plant Cell Physiol., 2012, vol. 53, p. 1380. https://doi.org/10.1093/pcp/pcs082

    Article  PubMed  CAS  Google Scholar 

  8. Weiss, J., May, P., Kempa, S., Irgang, S., Recuenco-Munoz, L., Pietzke, M., Schwemmer, T., Rupprecht, J., Egelhofer, V., and Weckwerth, W., Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses, Mol. Biosyst., 2010, vol. 6, p. 1018. https://doi.org/10.1039/b920913a

    Article  PubMed  CAS  Google Scholar 

  9. Höhner, R., Barth, J., Magneschi, L., Jaeger, D., Niehues, A., Bald, T., Grossman, A., Fufezan, C., and Hippler, M., The metabolic status drives acclimation of iron deficiency responses in Chlamydomonas reinhardtii as revealed by proteomics based hierarchical clustering and reverse genetics, Mol. Cell. Proteomics, 2013, vol. 12, p. 2774. https://doi.org/10.1074/mcp.m113.029991

  10. Semenenko, V., Zvereva, M., Kuptsova, E., Klimova, L., and Vladimirova, M., Metabolite regulation of the chloroplast genome expression and the chloroplast–cytoplasm regulatory relationships, Proc. Life Sci., 1984, p. 128. https://doi.org/10.1007/978-3-642-69686-2_14

  11. Goodenough, U., Blaby, I., Casero, D., Gallaher, S.D., Goodson, C., Johnson, S., Lee, J.H., Merchant, S.S., Pellegrini, M., Roth, R., Rusch, J., Singh, M., Umen, J.G., Weiss, T.L., and Wulan, T., The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii,Eukaryot. Cell, 2014, vol. 13, p. 591. https://doi.org/10.1128/ec.00013-14

    Article  PubMed  PubMed Central  Google Scholar 

  12. Terashima, M., Specht, M., Naumann, B., and Hippler, M., Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics, Mol. Cell. Proteomics, 2010, vol. 9, p. 1514. https://doi.org/10.1074/mcp.m900421-mcp200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Deng, X., Cai, J., and Fei, X., Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii,BMC Biochem., 2013, vol. 14, p. 38. https://doi.org/10.1186/1471-2091-14-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Boyle, N. and Morgan, J., Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii,BMC Syst. Biol., 2009, vol. 3, p. 4. https://doi.org/10.1186/1752-0509-3-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Winck, F., Páez Melo, D., and González Barrios, A., Carbon acquisition and accumulation in microalgae Chlamydomonas: insights from “omics” approaches, J. Proteomics, 2013, vol. 94, p. 207. https://doi.org/10.1016/j.jprot.2013.09.016

    Article  PubMed  CAS  Google Scholar 

  16. Marchand, J., Heydarizadeh, P., Schoefs, B., and Spetea, C., Ion and metabolite transport in the chloroplast of algae: lessons from land plants, Cell. Mol. Life Sci., 2018, vol. 75, p. 2153. https://doi.org/10.1007/s00018-018-2793-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L., Gontero, B., Martin, W., Garin, J., Joyard, J., and Rolland, N., A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the proteobacterial mitochondrial ancestor, Mol. Biol. Evol., 2009, vol. 26, p. 1533. https://doi.org/10.1093/molbev/msp068

    Article  PubMed  CAS  Google Scholar 

  18. Terashima, M., Specht, M., and Hippler, M., The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features, Curr. Genet., 2011, vol. 57, p. 151. https://doi.org/10.1007/s00294-011-0339-1

    Article  PubMed  CAS  Google Scholar 

  19. Lv, H., Qu, G., Qi, X., Lu, L., Tian, C., and Ma, Y., Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation, Genomics, 2013, vol. 101, p. 229. https://doi.org/10.1016/j.ygeno.2013.01.004

    Article  PubMed  CAS  Google Scholar 

  20. Puzanskii, R.K., Shavarda, A.L., and Shishova, M.F., Dynamics of autotrophic Chlamydomonas reinhardtii metabolome during exponentional and stationary phase, Vestn. St.-Petersburg Univ., 2015, vol. 60, no. 3, p. 104.

  21. Puzanskiy, R., Tarakhovskaya, E., Shavarda, A., and Shishova, M., Metabolomic and physiological changes of Chlamydomonas reinhardtii (Chlorophyceae, Chlorophyta) during batch culture development, J. Appl. Phycol., 2017, vol. 30, p. 803. https://doi.org/10.1007/s10811-017-1326-9

    Article  CAS  Google Scholar 

  22. Puzanskiy, R., Romanyuk, D., and Shishova, M., Coordinated alterations in gene expression and metabolomic profiles of Chlamydomonas reinhardtii during batch autotrophic culturing, Biol. Commun., 2018, vol. 63, p. 87. https://doi.org/10.21638/spbu03.2018.110

    Article  Google Scholar 

  23. Gorman, D. and Levine, R., Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtiii,Proc. Natl. Acad. Sci. USA, 1965, vol. 54, p. 1665. https://doi.org/10.1073/pnas.54.6.1665

    Article  PubMed  CAS  Google Scholar 

  24. Liu, C., Wu, G., Huang, X., Liu, S., and Cong, B., Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation, Extremophiles, 2012, vol. 16, p. 419. https://doi.org/10.1007/s00792-012-0441-4

    Article  PubMed  CAS  Google Scholar 

  25. R Core Team, A Language and Environment for Statistical Computing Vienna: R Foundation for Statistical Computing, 2018.

  26. Jolliffe, I. and Cadima, J., Principal component analysis: a review and recent developments, Philos. Trans. A Math.Phys. Eng. Sci., 2016, vol. 374: 20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  27. Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J., Holmes, E., and Trygg, J., OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification, J. Chemometr., 2006, vol. 20, p. 341. https://doi.org/10.1002/cem.1006

  28. Yang, D., Song, D., Kind, T., Ma, Y., Hoefkens, J., and Fiehn, O., Lipidomic analysis of Chlamydomonas reinhardtii under nitrogen and sulfur deprivation, PLoS One, 2015, vol. 10: e0137948. https://doi.org/10.1371/journal.pone.0137948

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Humby, P., Snyder, E., and Durnford, D., Conditional senescence in Chlamydomonas reinhardtii (Chlorophyceae), J. Phycol., 2013, vol. 49, p. 389. https://doi.org/10.1111/jpy.12049

    Article  PubMed  CAS  Google Scholar 

  30. Moon, M., Kim, C., Park, W., Yoo, G., Choi, Y., and Yang, J., Mixotrophic growth with acetate or volatile fatty acids maximizes growth and lipid production in Chlamydomonas reinhardtii,Algal Res., 2013, vol. 2, p. 352. https://doi.org/10.1016/j.algal.2013.09.003

    Article  Google Scholar 

Download references

Funding

This work was partially supported by the Russian Foundation for Basic Research, project no. 19-04-00655, and by a State Assignment given to Komarov Botanical Institute, Russian Academy of Sciences, no. АААА-А18-118032390136-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Shishova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Balakshina

Abbreviations: DAI—day after inoculation; FDR—false discovery rate; MWW—Mann–Whitney–Wilcoxon test; (O)PLS-DA—(orthogonal) partial least squares (or projection to latent structures) discriminant analysis; PC—principal component; PCA—principal component analysis; TAP—Tris acetate phosphate medium; TM—Tris minimal medium; VIP—variable importance in projection.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzanskiy, R.K., Romanyuk, D.A. & Shishova, M.F. Shift in Expression of the Genes of Primary Metabolism and Chloroplast Transporters in Chlamydomonas reinhardtii under Different Trophic Conditions. Russ J Plant Physiol 67, 867–878 (2020). https://doi.org/10.1134/S102144372005012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144372005012X

Keywords:

Navigation