Skip to main content
Log in

Melatonin and Selenium Regulate Growth and Oxidative Status of Saussurea orgaadayi In Vitro Cell Cultures Derived from Different Explants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effects of 0.1 pM melatonin, 1.0 nM sodium selenite (\({\text{SeO}}_{3}^{{2 - }}\)), and the combined application of these agents on morphogenesis and metabolism of two callus cell lines of Saussurea orgaadayi (Khanm.) Krasnob. were examined. Phenotypic distinctions were revealed for cell cultures obtained from different explants, namely, hypocotyls and cotyledons. The number and dimensions of large-sized cells were higher in the hypocotyl-derived cell culture (HCC) than in the cotyledonary cell culture (CCC). The relation between the growth of two callus cultures and specific traits of their metabolism was noted. The actively growing HCC differed from CCC by a higher content of proline (2.5-fold increase) and ecdysterone-like compound (2.3-fold rise), an increased rate of lipid peroxidation (twofold), and by a lower content of flavonoids. Accordingly, the CCC line exhibited a threefold higher level of flavonoids compared to HCC and a lower content of other compounds. In both cell lines treated with exogenous melatonin, the growth index calculated on a fresh weight basis was increased throughout 20 days after subculture, whereas the presence of \({\text{SeO}}_{3}^{{2 - }}\) elevated the growth index on the 20th–25th days in the CCC line and did not affect the growth index in the HCC line. The combined treatment with melatonin and \({\text{SeO}}_{3}^{{2 - }}\) raised the growth index starting from the 15th day; the stimulatory influence was larger in the HCC than in the CCC line. Melatonin and \({\text{SeO}}_{3}^{{2 - }}\) had a regulatory action on the cellular antioxidant system. Melatonin retarded lipid peroxidation and elevated proline content in both lines. The influence of \({\text{SeO}}_{3}^{{2 - }}\) was less effective than that of melatonin. Under combined action of both factors, changes in lipid peroxidation in CCC were smaller than under the action of melatonin alone, whereas changes in the proline content were enhanced. The effect of the combined treatment on lipid peroxidation and proline content in HCC did not differ from the effects exerted by melatonin alone. Melatonin and \({\text{SeO}}_{3}^{{2 - }}\) were hypothesized to differentially affect the cell culture respiration as a source of reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Arnao, M.B. and Hernández-Ruiz, J., Melatonin and its relationship to plant hormones, Ann. Bot., 2018, vol. 121, p. 195. https://doi.org/10.1093/aob/mcx114

    Article  CAS  PubMed  Google Scholar 

  2. Arnao, M. and Hernández-Ruiz, J., Melatonin and reactive oxygen and nitrogen species: a model for the plant redox network, Melatonin Res., 2019, vol. 2, no. 3, p. 152. https://doi.org/10.32794/11250036

    Article  Google Scholar 

  3. Wei, J., Li, D.X., Zhang, J.R., Shan, C., Rengel, Z., Song, Z.B., and Chen, Q., Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana, J. Pineal Res., 2018, vol. 65: e12500. https://doi.org/10.1111/jpi.12500

    Article  CAS  PubMed  Google Scholar 

  4. Golovatskaya, I.F., Boyko, E.V., and Karnachuk, R.A., Role of melatonin in regulation of IAA-dependent reactions of plants under different conditions of illumination, Vestn. Tomsk Gos. Univ., Biol., 2017, no. 37, p. 144. https://doi.org/10.17223/19988591/37/8

  5. Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G.A., Fu, C., and Ren, S., Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems, PLoS One, 2014, vol. 9: e93462. https://doi.org/10.1371/journal.pone.0093462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kholodova, V.P., Vasil’ev, S.V., Efimova, M.V., Voronin, P.Yu., Rakhmankulova, Z.F., Danilova, E.Yu., and Kuznetsov, Vl.V., Exogenous melatonin protects canola plants from toxicity of excessive copper, Russ. J. Plant Physiol., 2018, vol. 65, p. 882. https://doi.org/10.1134/S1021443718060080

    Article  CAS  Google Scholar 

  7. Boyko, E.V., Golovatskaya, I.F., Bender, O.G., and Plyusnin, I.N., Effect of short-term treatment of roots with melatonin on photosynthesis of cucumber leaves, Russ. J. Plant Physiol., 2020, vol. 67, p. 351. https://doi.org/10.1134/S102144372002003X

    Article  CAS  Google Scholar 

  8. Zheng, X., Tan, D.X., Allan, A.C., Zuo, B., Zhao, Y., Reiter, R.J., Wang, L., Wang, Z., Guo, Y., Zhou, J., Shan, D., Li, Q., Han, Z., and Kong, J., Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress, Sci. Rep., 2017, vol. 7, p. 41236. https://doi.org/10.1038/srep41236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tan, D.X., Manchester, L.C., Qin, L., and Reiter, R.J., Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics, Int. J. Mol. Sci., 2016, vol. 17, p. 2124. https://doi.org/10.3390/ijms17122124

    Article  CAS  PubMed Central  Google Scholar 

  10. Krasnaya kniga Respubliki Altai. Rasteniya (The Red Book of the Altai Republic. Plants), Maneev, A.G., Achimova, A.A., Sedel’nikova, N.V., and Gorbunova, I.A., Eds., Gorno-Altaisk, 2017.

  11. Pogodin, I.S., Luksha, E.A., and Predein, N.A., The chemical composition of plants of the genus Saussurea DC., growing over Siberian, Khim. Rastit. Syr’ya, 2014, no. 3, p. 43. https://doi.org/10.14258/jcprm.1403043

  12. Golovatskaya, I.F. and Volodina, N.A., Regulation of growth and secondary metabolism of Saussurea orgaadayi cell culture by 28-homobrassinolide and selenium, Izv. Samara Nauch. Tsentra Ross. Akad. Nauk, 2013, vol. 15, no. 3 (5), p. 1591. http://www.ssc.smr.ru/media/ journals/izvestia/2013/2013_3_1591_1595.pdf

  13. Djanaguiraman, M., Devi, D.D., Shanker, A.K., Sheeba, J.A., and Bangarusamy, U., Selenium—an antioxidative protectant in soybean during senescence, J. Plant Soil, 2005, vol. 272, p. 77. https://doi.org/10.1016/S2095-3119(15)61201-1

    Article  CAS  Google Scholar 

  14. Golovatskaya, I.F., Kulagina, Yu.M., Pavlova, D.G., and Karnachuk, R.A., Effect of selenium on morphogenesis and biochemical parameters of Triticum aestivum L. plants depending on selective light, Agrokhimiya, 2013, no. 5, p. 58.

  15. Golovatskaya, I.F., Boyko, E.V., Vidershpan, A.N., and Laptev, N.I., Age-related morphophysiological and biochemical changes in Lactuca sativa L. plants under the influence of selenium and light of different intensities, S.-khoz.Biol., 2018, vol. 53, no. 5, p. 1025. https://doi.org/10.15389/agrobiology.2018.5.1025rus

    Article  Google Scholar 

  16. Karnachuk, R.A. and Likhacheva, A.V., Nutrient medium for Saussurea orgaadayi V. Khan. et Krasnov cell culture, RU Patent No. 2428472, 2011.

  17. Tselniker, Yu.L., Fiziologicheskie osnovy tenevynoslivosti drevesnykh rastenii (Physiological Foundations of the Shade Growth Woody Plants), Moscow: Nauka, 1978.

  18. Yakubova, M.R., Genkina, G.L., Shakirov, T.T., and Abubakirov, N.K., Chromatography-spectrophotometric method for determination of ecdysterone in plant products, Khim. Prir. Soed., 1978, no. 6, p. 737.

  19. Zhang, N., Sun, Q.Q., Li, H.F., Li, X.S., Cao, Y.Y., Zhang, H.J., Li, S.T., Zhang, L., Qi, Y., Ren, S.X., Zhao, B., and Guo, Y.D., Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage, Front. Plant Sci., 2016, vol. 7, p. 222. https://doi.org/10.3389/fpls.2016.00197

    Article  Google Scholar 

  20. Zhao, Y., Qi, L.W., Wang, W.M., Saxena, P.K., and Liu, C.Z., Melatonin improves the survival of cryopreserved callus of Rhodiola crenulata,J. Pineal Res., 2011, vol. 50, no. 1, p. 83.

    Article  CAS  Google Scholar 

  21. Gupta, P., Sharma, S., and Saxena, S., Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol, Appl. Biochem. Biotechnol., 2015, vol. 176, no. 3, p. 863. https://doi.org/10.1007/s12010-015-1616-0

    Article  CAS  PubMed  Google Scholar 

  22. Soshinkova, T.N., Radyukina, N.L., Korol’kova, D.V., and Nosov, A.V., Proline and functioning of the antioxidant system in Thellungiella salsuginea plants and cultured cells subjected to oxidative stress, Russ. J. Plant Physiol., 2013, vol. 60, p. 41. https://doi.org/10.1134/S1021443713010093

    Article  CAS  Google Scholar 

  23. Salehi, B., Sharopov, F., Fokou, P.V.T., Kobylinska, A., de Jonge, L., Tadio, K., Sharifi-Rad, J., Posmyk, M.M., Martorell, M., Martins, N., and Iriti, M., Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans, Cells, 2019, vol. 8, no. 7, p. 681. https://doi.org/10.3390/cells8070681

    Article  CAS  PubMed Central  Google Scholar 

  24. Sharma, S., Kaur, N., Kaur, S., and Nayyar, H., Ascorbic acid reduces the phytotoxic effects of selenium on rice (Oryza sativa L.) by up-regulation of antioxidative and metal-tolerance mechanisms, J. Plant Physiol. Pathol., 2014, vol. 2, p. 3. https://doi.org/10.4172/2329-955X.1000128

    Article  Google Scholar 

  25. Wang, G., Zhang, J., Wang, G., Fan, X., Sun, X., Qin, H., Xu, N., Zhong, M., Qiao, Z., Tang, Y., and Song, R., Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize, Plant Cell, 2014, vol. 26, no. 6, p. 2582. https://doi.org/10.1105/tpc.114.125559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khan, T., Ullah, M.A., Garros, L., Hano, C., and Abbasi, B.H., Synergistic effects of melatonin and distinct spectral lights for enhanced production of anti-cancerous compounds in callus cultures of Fagonia indica, J. Photochem. Photobiol.,Ser. B: Biol., 2019, vol. 190, p. 163. https://doi.org/10.1016/j.jphotobiol.2018.10.010

    Article  CAS  Google Scholar 

  27. Gill, S.S. and Tuteja, N., Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants, Plant Physiol. Biochem., 2010, vol. 48, no. 12, p. 909. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  28. Volkova, L.A., Urmantseva, V.V., Burgutin, A.B., and Nosov, A.M., Sensitivity of antioxidant status of plant cells to furostanol glycosides, Russ. J. Plant Physiol., 2016, vol. 63, no. 6, p. 783. https://doi.org/10.1134/S1021443716060157

    Article  CAS  Google Scholar 

  29. Wan, J., Zhang, P., Wang, R., Sun, L., Ju, Q., and Xu, J., Comparative physiological responses and transcriptome analysis reveal the roles of melatonin and serotonin in regulating growth and metabolism in Arabidopsis,BMC Plant Biol., 2018, vol. 18, p. 362. https://doi.org/10.1186/s12870-018-1548-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fazal, H., Abbasi, B.H., Ahmad, N., and Ali, M., Exogenous melatonin trigger biomass accumulation and production of stress enzymes during callogenesis in medicinally important Prunella vulgaris L. (Selfheal), Physiol. Mol. Biol. Plants, 2018, vol. 24, no. 6, p. 1307. https://doi.org/10.1007/s12298-018-0567-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Program for Promoting the Competitive Potential of Tomsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Golovatskaya.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies with human participants or animals performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Bulychev

Abbreviations: CCC―cotyledonary cell culture; HCC―hypocotyl-derived cell culture; MDA―malondialdehyde; MS―Murashige and Skoog (nutrient medium); ROS―reactive oxygen species; \({\text{SeO}}_{3}^{{2 - }}\)―sodium selenite; SOD―superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovatskaya, I.F., Boyko, E.V., Reznichenko, A.E. et al. Melatonin and Selenium Regulate Growth and Oxidative Status of Saussurea orgaadayi In Vitro Cell Cultures Derived from Different Explants. Russ J Plant Physiol 67, 1036–1045 (2020). https://doi.org/10.1134/S1021443720050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720050052

Keywords:

Navigation