Skip to main content
Log in

Quercus robur as a Potential Cd Phytostabilizator

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Pedunculate oak (Quercus robur L.) is one of the most important forest tree species in Europe, from both economic and ecological perspectives. Several studies indicate the possibility of using different species of the genus Quercus for afforestation of lands affected by industry, including trace-element polluted areas. The main objective of this research was to determine the Cd accumulation patterns of pedunculate oak seedlings subjected to various Cd treatments. Differences in Cd accumulation ability, mineral nutrients concentrations and observed damage upon Cd treatment of plants derived from different regions of origin are discussed. Obtained results suggest the possible use of pedunculate oak in cadmium phytostabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Danielewicz, W. and Pawlaczyk, P., The role of oaks in the structure and functioning of phytocenoses, in Nasze Drzewa Leśne. Monografie Popularnonaukowe, Dęby, Poznań—Kórnik, 2006, vol. 11 (in Polish).

  2. Utmazian, M.N.D.S., Wieshammer, G., Vega, R., and Wenzel, W.W., Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars, Environ. Pollut., 2007, vol. 148, p. 155.

    Article  Google Scholar 

  3. Zacchini, M., Pietrini, F., Scarascia-Mugnozza, G., Iori, V., Pietrosanti, L., and Massacci, A., Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics, Water Air Soil Pollut., 2009, vol. 197, p. 23.

    Article  CAS  Google Scholar 

  4. Migeon, A., Richaud, P., Guinet, F., Chalot, M., and Blaudez, D., Metal accumulation by woody species on contaminated sites in the north of France, Water Air Soil Pollut., 2009, vol. 204, p. 89.

    Article  CAS  Google Scholar 

  5. He, J., Ma, C., Ma, Y., Li, H., Kang, J., Liu, T., Polle, A., Peng, C., and Luo, Z.B., Cadmium tolerance in six poplar species, Environ. Sci. Pollut. Res., 2013, vol. 20, p. 163.

    Article  CAS  Google Scholar 

  6. Meers, E., Vandecasteele, B., Ruttens, A., Vangronsveld, J., and Tack, F.M.G., Potential of five willow species (Salix spp.) for phytoextraction of heavy metals, Environ. Exp. Bot., 2007, vol. 60, p. 57.

    Article  CAS  Google Scholar 

  7. Vyslouzilova, M., Tlustos, P., and Száková, J., Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils, Plant Soil Environ., 2003, vol. 49, p. 542.

    Article  Google Scholar 

  8. Domínguez, M.T., Maranón, T., Murillo, J.M., Schulin, R., and Robinson, B.H., Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study, Env-iron. Pollut., 2008, vol. 152, p. 50.

  9. Gogorcena, Y., Larbi, A., Andaluz, S., Carpena, R.O., Abadía, A., and Abadía, J., Effects of cadmium on cork oak (Quercus suber L.) plants grown in hydroponics, Tree Physiol., 2011, vol. 31, p. 1401.

    Article  CAS  Google Scholar 

  10. Landberg, T. and Greger, M., Differences in oxidative stress in heavy metal resistant and sensitive clones of Salix viminalis,J. Plant Physiol., 2002, vol. 159, p. 69.

    Article  CAS  Google Scholar 

  11. Qadir, S., Qureshi, M.I., Javed, S., and Abdin, M.Z., Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress, Plant Sci., 2004, vol. 167, p. 1171.

    Article  CAS  Google Scholar 

  12. Jug, I., Jug, D., Vukadinović, V., Durdević, B., Vukadinović, V., Stipešević, B., and Kovacevic, D., Negative effects of iron chlorosis, Proc. 4th Int. Sci. Symp. “Agrosym 2013,” Jahorina, Bosnia and Herzegovina, October 3–6,2013, Abstracts of Papers, Lukavica: Univ. East Sarajevo, Faculty of Agriculture, 2013, p. 37.

  13. Balakhnina, T.I., Bulak, P., Matichenkov, V.V., Kosobryukhov, A.A., and Wlodarczyk, T.M., The influence of Si-rich mineral zeolite on the growth processes and adaptive potential of barley plants under cadmium stress, Plant Growth Regul., 2015, vol. 75, p. 557.

    Article  CAS  Google Scholar 

  14. Guidi, L., Mori, S., Degl’Innocenti, E., and Pecchia, S., Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence, Plant Physiol. Biochem., 2007, vol. 45, p. 851.

    Article  CAS  Google Scholar 

  15. Nurzynska-Wierdak, R., Dzida, K., Rozek, E., and Jarosz, Z., The effect of nitrogen and potassium on N–NH4 and N–NO3 accumulation and nutrient contents in rocket (Eruca sativa Mill.) leaves, Acta Sci. Pol. Hort. Cult., 2012, vol. 11, p. 211.

    Google Scholar 

  16. Kabata-Pendias, A., Trace Elements in Soils and Plants, Boca Raton: CRC, 2010.

    Book  Google Scholar 

  17. Domínguez, M.T., Madrid, F., Marañón, T., and Murillo, J.M., Cadmium availability in soil and retention in oak roots: potential for phytostabilization, Che-mosphere, 2009, vol. 76, p. 480.

  18. Paoletti, E. and Günthardt-Goerg, M.S., Growth responses and element content of Quercus pubescens seedlings under acidic and heavy metal contamination, Forest Snow and Landscape Research, 2006, vol. 80, p. 323.

    Google Scholar 

  19. Madejón, P., Marañón, T., and Murillo, J.M., Biomonitoring of trace elements in the leaves and fruits of wild olive and holm oak trees, Sci. Total Environ., 2006, vol. 355, p. 187.

  20. Brunner, I., Luster, J., Günthardt-Goerg, M.S., and Frey, B., Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil, Environ. Pollut., 2008, vol. 152, p. 559.

    Article  CAS  Google Scholar 

  21. Xu, J., Sun, J., Du, L., and Liu, X., Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum,New Phytol., 2012, vol. 196, p. 110.

    Article  CAS  Google Scholar 

  22. Vassilev, A., Perez-Sanz, A., Semane, B., Carleer, R., and Vangronsveld, J., Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium, J. Plant Nutr., 2005, vol. 28, p. 2159.

    Article  CAS  Google Scholar 

  23. Sárvári, É., Gáspár, L., Solti, Á., Hakmaoui, A., Záray, G., Juhász, A.G., and Baron, M., Comparison of the tolerance and accumulation of Cu and Cd in Phragmites, Salix, and Populus leaves, Proc. AGRISAFE Final Conf. “Climate Change: Challenges and Opportunities in Agriculture,” Budapest, March 21–23,2011, Abstracts of Papers, Budapest: Agric. Res. Inst., Hung. Acad. Sci., 2011, p. 207.

  24. Durand, T.C., Hausman, J.F., Carpin, S., Albéric, P., Baillif, P., Label, P., and Morabito, D., Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba,Biol. Plant., 2010, vol. 54, p. 191.

    Article  CAS  Google Scholar 

  25. He, J., Li, H., Luo, J., Ma, C., Li, S., Qu, L., Gai, Y., Jiang, X., Janz, D., Polle, A., Tyree, M., and Luo, Z.B., A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus × canescens,Plant Physiol., 2013, vol. 162, p. 424.

    Article  CAS  Google Scholar 

  26. Cosio, C., Vollenweider, P., and Keller, C., Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). I. Macrolocalization and phytotoxic effects of cadmium, Environ. Exp. Bot., 2006, vol. 58, p. 64.

    Article  CAS  Google Scholar 

  27. Nikolić, N., Kojić, D., Pilipović, A., Pajević, S., Krstić, B., Borišev, M., and Orlović, S., Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity, Acta Biol. Cracov., Ser. Bot., 2008, vol. 50, p. 95.

  28. Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., and Ladle, R.J., Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions, Acta Physiol. Plant., 2016, vol. 38, p. 102.

    Article  Google Scholar 

  29. Goltsev, V.N., Kalaji, H.M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., and Allakhverdiev, S.I., Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus, Russ. J. Plant Physiol., 2016, vol. 63, p. 869.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leśniowska-Nowak.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: BFC—the Bioconcentration Factor; TF—Translocation Factor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sozoniuk, M., Nowak, M., Dudziak, K. et al. Quercus robur as a Potential Cd Phytostabilizator. Russ J Plant Physiol 67, 294–302 (2020). https://doi.org/10.1134/S1021443720020168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720020168

Keywords: