Skip to main content
Log in

iTRAQ-Based Proteomic Reveals Cell Cycle and Translation Regulation Involving in Peanut Buds Cold Stress

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cold stress is one major threats to field crops. The cold tolerant ability is a key limiting factor for the popularization of peanut (Arachis hypogaea L.) in cold areas. Our previous research showed three key metabolic change time points of peanut buds in response to low temperature. The present study applied iTRAQ proteomic to further quantify differentially expressed proteins in three key metabolic change time points. A total of 2684 non-redundant proteins and 333 differentially expressed proteins across the three cold stress treatment points were identified. The results enrich the cold stress regulation network and provide useful information for further improving the ability of peanut under cold stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Beck, E.H., Heim, R., and Hansen, J., Plant resistance to cold stress: mechanisms and environmental signals triggering frost hardening and dehardening, J. Biosci., 2004, vol. 29, p. 449.

    Article  Google Scholar 

  2. Fowler, D.B., Chauvin, L.P., Limin, A.E., and Sarhan, F., The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye, Theor. Appl. Genet., 1996, vol. 93, p. 554.

    Article  CAS  Google Scholar 

  3. Jaglo-Ottosen, K.R., Glimour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F., Arabidopsis CBF1 overexpression induces cor genes and enhances freezing tolerance, Science, 1998, vol. 280, p. 104.

    Article  CAS  Google Scholar 

  4. Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S., Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity, Plant J., 2000, vol. 23, p. 785.

    Article  CAS  Google Scholar 

  5. Lee, B.H., Henderson, D.A., and Zhu, J.K., The Arabidpsis cold-responsive transcriptome and its regulation by ICE1, Plant Cell, 2005, vol. 17, p. 3155.

    Article  CAS  Google Scholar 

  6. Pradet-Balade, B., Boulme, F., Beug, H., Mullner, E.W., and Garcia-Sanz, J.A., Translation control: bridging the gap between genomics and proteomics, Trends Biochem. Sci., 2001, vol. 26, p. 225.

    Article  CAS  Google Scholar 

  7. Greenbaum, D., Colangelo, C., Williams, K., and Gerstein, M., Comparing protein abundance and mRNA expression levels on a genomic scale, Genome Biol., 2003, vol. 4, p. 117.

    Article  Google Scholar 

  8. Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F., Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcription activator that binds to the C repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, p. 1035.

    Article  CAS  Google Scholar 

  9. O’Farrell, P.H., High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975, vol. 250, p. 4007.

    PubMed  PubMed Central  Google Scholar 

  10. Beckett, P., The basics of 2D DIGE, Methods Mol. Biol., 2012, vol. 854, p. 9.

    Article  CAS  Google Scholar 

  11. Lan, P., Li, W., Wen, T.N., Shiau, J.Y., Wu, Y.C., Lin, W., and Schmidt, W., iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis, Plant Physiol., 2011, vol. 155, p. 821.

    Article  CAS  Google Scholar 

  12. Cui, S.X., Huang, F., Wang, J., Ma, X., Cheng, Y.S., and Liu, J.Y., A proteomic analysis of cold stress response in rice seedling, Proteomics, 2005, vol. 5, p. 3162.

    Article  CAS  Google Scholar 

  13. Wang, X., Shan, X., Wu, Y., Su, S., Li, S., Liu, H., Han, J., Xue, C., and Yuan, Y., iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings, J. Proteomics, 2016, vol. 146, p. 14.

    Article  CAS  Google Scholar 

  14. Qin, J., Gu, F., Liu, D., Yin, C.C., Zhao, S.J., Chen, H., Zhang, J., Yang, C., Zhan, X., and Zhang, V.C., Proteomic analysis of elite soybean Jidou17 and its parents using iTRAQ-based quantitative approaches, Proteome Sci., 2013, vol. 11, p. 12.

    Article  CAS  Google Scholar 

  15. Wang, X.J., Sun, D.L., Bian, N.F., Shen, Y., Zhang, Z.M., Wang, X., Xu, Z.J., and Qi, Y.J., Metabolic changes of peanut (Arachis hypogaea L.) buds in response to low temperature (LT), S. Afr. J. Bot., 2017, vol. 111, p. 341.

    Article  CAS  Google Scholar 

  16. Le, M.Q., Engelsberger, W.R., and Hincha, D.K., Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4°C in different Arabidopsis thaliana accessions, Cryobiology, 2008, vol. 57, p. 104.

    Article  CAS  Google Scholar 

  17. Yan, S.P., Zhang, Q.Y., Tang, Z.C., Su, W.A., and Sun, W.N., Comparative proteomic analysis provides new insights into chilling stress responses in rice, Mol. Cell Proteomics, 2006, vol. 5, p. 484.

    Article  CAS  Google Scholar 

  18. Druck, T., Gu, Y., Prabhala, G., Cannizzaro, L.A., Park, S.H., Huebner, K., and Keen, J.H., Chromosome localization of human genes for clathrin adaptor polypeptides AP2 beta and AP50 and the clathrin-binding protein, VCP, Genomics, 1995, vol. 30, p. 94.

    Article  CAS  Google Scholar 

  19. Imamura, S., Ojima, N., and Yamashita, M., Cold-inducible expression of the cell division cycle gene CDC48 and its promotion of cell proliferation during cold acclimation in zebrafish cells, FEBS Lett., 2003, vol. 549, p. 14.

    Article  CAS  Google Scholar 

  20. Aguirre, A.A., Vicente, A.M., Hardwick, S.W., Alvelos, D.M., Mazzon, R.R., Luisi, B.F., and Marques, M.V., Association of the cold-shock DEAD-box RNA helicase RhlE to the RNA degradosome in Caulobacter crescentus,J. Bacteriol., 2017, vol. 199: e00135.

    Article  CAS  Google Scholar 

  21. Hu, W., Hu, G., and Han, B., Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice, Plant Sci., 2009, vol. 176, p. 583.

    Article  CAS  Google Scholar 

  22. Liu, H., Ouyang, B., Zhang, J., Wang, T., Li, H., Zhang, Y., Yu, C., and Ye, Z., Differential modulation of photosynthesis, signaling, and transcriptional regulation between tolerant and sensitive tomato genotypes under cold stress, PLoS One, 2012, vol. 7: e50785.

    Article  CAS  Google Scholar 

  23. Zhang, J., Yuan, H., Yang, Y., Fish, T., Lyi, S.M., Thannhauser, T.W., Zhang, L., and Li, L., Plastid ribosomal protein S5 is involved in photosynthesis, plant development, and cold stress tolerance in Arabidopsis,J. Exp. Bot., 2016, vol. 67, p. 2731.

    Article  CAS  Google Scholar 

  24. Wang, L., Li, H., Zhao, C., Li, S., Kong, L., Wu, W., Kong, W., Liu, Y., Wei, Y., Zhu, J.K., and Zhang, H., The inhibition of protein translation mediated by AtGC-N1 is essential for cold tolerance in Arabidopsis thaliana,Plant Cell Environ., 2017, vol. 40, p. 56.

    Article  CAS  Google Scholar 

  25. Jackson, R.J., Hellen, C.U., and Pestova, T.V., The mechanism of eukaryotic translation initiation and principles of its regulation, Nat. Rev. Mol. Cell Biol., 2010, vol. 11, p. 113.

    Article  CAS  Google Scholar 

  26. Sokabe, M. and Fraser, C.S., A helicase-independent activity of eIF4A in promoting mRNA recruitment to the human ribosome, Proc. Natl. Acad. Sci. USA, 2017, vol. 114, p. 6304.

    Article  CAS  Google Scholar 

  27. Allen, G.S. and Frank, J., Structural insights on the translation initiation complex: ghosts of a universal initiation complex, Mol. Microbiol., 2007, vol. 63, p. 941.

    Article  CAS  Google Scholar 

  28. Lee, S., Truesdell, S.S., Bukhari, S.I., Lee, J.H., LeTonqueze, O., and Vasudevan, S., Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages, Proc. Natl. Acad. Sci. USA, 2014, vol. 111: e4315.

    Article  CAS  Google Scholar 

  29. Lei, L., Shi, J., Chen, J., Zhang, M., Sun, S., Xie, S., Li, X., Zeng, B., Peng, L., Hauck, A., Zhao, H., Song, W., Fan, Z., and Lai, J., Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress, Plant J., 2015, vol. 84, p. 1206.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Basal Research Fund of Jiangsu Academy of Agricultural Sciences ZX(18)2014, Xuzhou Science and Technology Project KC16NG068, and Liaoning S&T Project (2014024, 2014201002).

Author information

Authors and Affiliations

Authors

Contributions

X.W. and Y.S. contributed equally to this work. X.W. and Y.S. performed the experiments. D.S., N.B. and P.S analysed the data. Z.Z., Z.C. and Y.L. helped with experiments. Y.S. and X.W. provided overall supervision, supervised the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Y. Shen or X. Wang.

Ethics declarations

This article does not contain any studies using animals as objects or any research involving people as objects of research. The authors declare that they have no conflict of interest.

Additional information

Abbreviations: iTRAQ—isobaric tags for relative and absolute quantitation; 2D—two-dimensional; 2D DIGE—2D difference gel electrophresis.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.J., Shen, Y., Sun, D.L. et al. iTRAQ-Based Proteomic Reveals Cell Cycle and Translation Regulation Involving in Peanut Buds Cold Stress. Russ J Plant Physiol 67, 103–110 (2020). https://doi.org/10.1134/S1021443720010239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443720010239

Keywords:

Navigation