Skip to main content

Characterization of Arabidopsis thaliana Plants Expressing Bacterial Phytase


Transgenic plants containing genes of bacterial phytases represent one of the promising ways to solve the problem of phosphorus deficiency in the nutrition of plants and monogastric animals. Histidine acid phytase PaPhyC from Pantoea agglomerans has a high activity and represents a promising basis for the biotechnology of plants. In this study, the analysis of morphological characteristics, phytase activity, and phosphorus content in tissues of the earlier obtained, genetically modified Arabidopsis thaliana (L.) Heynh. plants producing extracellular phytase (PaPhyC) has been carried out. According to the obtained results, modified plants are able to grow on a medium supplemented with phytate as the sole source of phosphorus. Exterior characteristics (rosette diameter and area) of phytase-expressing plants grown on media containing phytate or inorganic phosphorus do not differ, which confirms that the plants use phytate as the phosphorus source. In the case of plant cultivation on a phytate-containing medium, a high phytase activity is observed in the cell walls of modified plants. The content of inorganic phosphorus in tissues of modified plants does not change in the case of their cultivation on the medium containing phytate as the sole source of phosphorus.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. 1

    Doolette, A.L., Improved techniques for the charachterisation of soil organic phosphorus using 31P nuclear magnetic resonance spectroscopy and their application to Australian soils, PhD Thesis, Adelaide: Univ. Adelaide, School of Agriculture, Food and Wine, 2010.

  2. 2

    Stout, L.M., Nguyen, T.T., and Jaisi, D.P., Relationship of phytate, phytate-mineralizing bacteria, and beta-propeller phytase genes along a coastal tributary to the Chesapeake Bay, Soil Sci. Soc. Am. J., 2016, vol. 80, pp. 84–96.

    CAS  Article  Google Scholar 

  3. 3

    Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jorgensen, M., Stoger, E., Arcalis, E., and Brinch-Pedersen, H., Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice, Plant Physiol., 2011, vol. 156, pp. 1087–1100.

    CAS  Article  Google Scholar 

  4. 4

    Phillippy, B.Q., Perera, I.Y., Donahue, J.L., and Gillaspy, G.E., Certain Malvaceae plants have a unique accumulation of myo-inositol 1,2,4,5,6-pentakisphosphate, Plants (Basel), 2015, vol. 4, pp. 267–283.

    CAS  Article  Google Scholar 

  5. 5

    Gerke, J., Phytate (inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A review, Plants (Basel), 2015, vol. 4, pp. 253–266.

    CAS  Article  Google Scholar 

  6. 6

    Balaban, N.P., Suleimanova, A.D., Valeeva, L.R., Chastukhina, I.B., Rudakova, N.L., Sharipova, M.R., and Shakirov, E.V., Microbial phytases and phytate: exploring opportunities for sustainable phosphorus management in agriculture, Am. J. Mol. Biol., 2017, vol. 7, pp. 11–29.

    Article  Google Scholar 

  7. 7

    Lei, X.G., Weaver, J.D., Mullaney, E., Ullah, A.H., and Azain, M.J., Phytase, a new life for an 'old' enzyme, A-nnu. Rev. Anim. Biosci., 2013, vol. 1, pp. 283–309.

    Article  Google Scholar 

  8. 8

    Reddy, C.S., Kim, S.C., and Kaul, T., Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review, 3 Biotech, 2017, vol. 7: 195.

  9. 9

    Joshi, S. and Satyanarayana, T., Heterologous expression of yeast and fungal phytases: developments and future perspectives, Ind. J. Biotechnol., 2015, vol. 14, pp. 293–311.

    CAS  Google Scholar 

  10. 10

    Erpel, F., Restovic, F., and Arce-Johnson, P., Development of phytase-expressing Chlamydomonas reinhardtii for monogastric animal nutrition, BMC Biotechnol., 2016, vol. 16: 16.

    CAS  Article  Google Scholar 

  11. 11

    Nyamsuren, Ch., Valeeva, L.R., Sharipova, M.R., and Shakirov, E.V., An improved gene expression system to generate transgenic Arabidopsis thaliana plants harboring a Bacillus ginsengihumi phytase gene, Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, pp. 18–24.

    Google Scholar 

  12. 12

    Valeeva, L.R., Chuluuntsetseg, N., Sharipova, M.R., and Shakirov, E.V., Heterologous expression of secreted bacterial BPP and HAP phytases in plants stimulates Arabidopsis thaliana growth on phytate, Front. Plant Sci., 2018, vol. 9: 186.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Valeeva, L.R., Nyamsuren, Ch., Troshagina, D.S., Sharipova, M.R., and Shakirov, E.V., Expression of Pantoea agglomerans phytase from a strong constitutive promoter in Arabidopsis thaliana plants, Res. J. Pharm. Biol. Chem. Sci., 2015, vol. 6, pp. 99–104.

    CAS  Google Scholar 

  14. 14

    Clough, S.J. and Bent, A.F., Floral dip: a simplified method or Agrobacterium-mediated transformation of Arabidopsis thaliana,Plant J., 1998, vol. 16, pp. 735–743.

    CAS  Article  Google Scholar 

  15. 15

    Tocquin, P., Corbesier, L., Havelange, A., Pieltain, A., Kurtem, E., Bernier, G., and Perilleux, C., A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering of Arabidopsis thaliana,BMC Plant Biol., 2003, vol. 3: 2.

    Article  Google Scholar 

  16. 16

    George, T.S., Richardson, A.E., and Simpson, R.J., Behaviour of plant-derived extracellular phytase upon addition to soil, Soil Biol. Chem., 2005, vol. 37, pp. 977–988.

    CAS  Article  Google Scholar 

  17. 17

    Oh, T.K., Oh, S., Kim, S., Park, J.S., Vinod, N., Jang, K.M., Kim, S.C., Choi, C.W., Ko, S.M., Jeong, D.K., and Udayakumar, R., Expression of A-spergillus nidulans phy gene in Nicotiana benthamiana produces active phytase with broad specificities, Int. J. Mol. Sci., 2014, vol. 15, pp. 15571–15591.

    Article  Google Scholar 

  18. 18

    Greiner, R., Degradation of myo-inositol hexakisphosphate by a phytate-degrading enzyme from Pantoea ag-glomerans,Protein J., 2004, vol. 23, pp. 577–585.

    CAS  Article  Google Scholar 

  19. 19

    Suleimanova, A.D., Beinhauer, A., Valeeva, L.R., Chastukhina, I.B., Balaban, N.P., Shakirov, E.V., Greiner, R., and Sharipova, M.R., Novel glucose-1-phosphatase with high phytase activity and unusual metal ion activation from soil bacterium Pantoea sp. strain 3.5.1, Appl. Environ. Microbiol., 2015, vol. 81, pp. 6790–6799.

    CAS  Article  Google Scholar 

  20. 20

    Yao, M.Z., Wang, X., Wang, W., Fu, Y.J., and Liang, A.H., Improving the thermostabolity of Esc-herichia coli phytase appA, by enhancement of glycosylation, Biotechnol. Lett., 2013, vol. 35, pp. 1669–1676.

    CAS  Article  Google Scholar 

  21. 21

    Wang, Y., Ye, X., Ding, G., and Xu, F., Overexpression of phyA and appA genes improves soil organic phosphorus utilisation and seed phytase activity in Brassica n-apus,PLoS One, 2013, vol. 8: e60801.

    CAS  Article  Google Scholar 

  22. 22

    Angov, E., Codon usage: nature’s roadmap to expression and folding of proteins, Biotechnol. J., 2011, vol. 6, pp. 650–659.

    CAS  Article  Google Scholar 

  23. 23

    Ressayre, A., Glemin, S., Montalent, P., Serre-Giardi, L., Dilmann, C., and Joets, J., Introns structure patterns of variation in nucleotide composition in Arabidopsis thal-iana and rice protein-coding genes, Genome Biol. Evol., 2015, vol. 7, pp. 2913–2928.

    CAS  Article  Google Scholar 

  24. 24

    Yip, W., Wang, L., Cheng, C., Wu, W., Lung, S., and Lim, B.L., The introduction of a phytase gene from Bacill-us subtilis improved the growth performance of transgenic tobacco, Biochem. Biophys. Res. Commun., 2003, vol. 310, pp. 1148–1154.

    CAS  Article  Google Scholar 

  25. 25

    Medvedev, S.S., Fiziologiya rastenii (Plant Physiology), St. Petersburg: St. Petersburg. Gos. Univ., 2004.

  26. 26

    Lung, S.C., Chan, W.L., Yip, W., Wang, L., Yeung, E.C., and Lim, B.L., Secretion of beta-propeller phytase from tobacco and Arabidopsis roots enhances phosphorus utilization, Plant Sci., 2005, vol. 169, pp. 341–349.

    CAS  Article  Google Scholar 

  27. 27

    Belgaroui, N., Zaidi, I., Farhat, A., Chouayekh, H., Bouain, N., Chay, S., Curie, C., Mari, S., Masmoudi, K., Davidian, J.-C., Berthomieu, P., Rouached, H., and Hanin, M., Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling, Plant Cell Physiol., 2014, vol. 55, pp. 1912–1924.

    CAS  Article  Google Scholar 

  28. 28

    Belgaroui, N., Berthomieu, P., Rouached, H., and Hanin, M., The secretion of the bacterial phytase PHY-US417 by Arabidopsis roots reveals its potential for increasing phosphate acquisition and biomass production during co-growth, Plant Biotechnol. J., 2016, vol. 14, pp. 1914–1924.

    CAS  Article  Google Scholar 

  29. 29

    Matzke, M.A., Aufsatz, W., Kanno, T., Mette, M.F., and Matzke, A.J., Homology-dependent gene silencing and host defense in plants, Adv. Genet., 2002, vol. 46, pp. 235–275.

    CAS  Article  Google Scholar 

  30. 30

    Hong, Y.F., Liu, C.Y., Chang, K.J., Hour, A.L., Chan, M.T., Tseng, T.H., Chen, K.Y., Shaw, J.F., and Yu, S.M., The sweet potato sporamin promoter confers high-level phytase expression and improves organic phosphorus acquisition and tuber yield of transgenic potato, Plant Mol. Biol., 2008, vol. 67, pp. 347–361.

    CAS  Article  Google Scholar 

Download references


The study was supported by the Russian Foundation for Basic Research (project no. 16-08-00583).

Author information



Corresponding author

Correspondence to L. R. Valeeva.

Ethics declarations


This article does not contain any studies involving animals or human participants performed by any of the authors.


The authors declare that they have no conflict of interests.

Additional information

Translated by N. Statsyuk

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valeeva, L.R., Nyamsuren, C., Shakirov, E.V. et al. Characterization of Arabidopsis thaliana Plants Expressing Bacterial Phytase. Russ J Plant Physiol 66, 884–892 (2019).

Download citation


  • Arabidopsis thaliana
  • Pantoea agglomerans
  • heterologous expression
  • histidine acid phytase
  • phytate