Skip to main content
Log in

Photosynthesis and Oxygen Uptake Rate in Winter Rape Plants Treated with 5-Aminolevulinic Acid

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Effects of 5-aminolevulinic acid (ALA) at 200 mg/L on photosynthesis, structural organization of photosynthetic apparatus, oxygen uptake rate by the leaf tissue, contents of key respiratory enzymes—cytochrome c-oxidase (COX) and alternative oxidase (AOX)—and COX activity in winter rape plants (Brassica napus L.) were studied. It was found that 4–7-day-old seedlings grown on ALA solution accumulated phenols and their derivatives anthocyanins; the composition of the latter compounds was the same as in the control seedlings. Photosynthesis was inhibited in the ALA-treated plants since their capability to form structural the components of the photosynthetic apparatus—pigment–protein complexes (PPC) of the photosystems I and II—was reduced. In these plants, oxygen uptake by the leaf tissue increased under dark conditions. Simultaneously, the activity of the terminal COX of the cytochrome part of the respiratory path also increased as did the activity of another terminal respiratory enzyme, AOX, which is usually activated under stress, including oxidative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chupakhina, G.N., Maslennikov, P.V., and Skrypnik, L.N., Prirodnye antioksidanty (ekologicheskii aspekt) (Natural Antioxidants (Environmental Aspect)), Kaliningrad, 2011.

  2. Gould, K.S., Markham, K.R., Smith, R.H., and Goris, J.J., Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn., J. Exp. Bot., 2000, vol. 51, pp. 1107–1115.

    Article  CAS  Google Scholar 

  3. Feild, T.S., Lee, D.W., and Holbrook, N.M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood, Plant Physiol., 2001, vol. 127, pp. 566–574.

    Article  CAS  Google Scholar 

  4. Neill, S.O. and Gould, K.S., Anthocyanins in leaves: light attenuators or antioxidants? Funct. Plant Biol., 2003, vol. 30, pp. 865–873.

    Article  CAS  Google Scholar 

  5. Wang, H., Cao, G., and Prior, R.L., Oxygen radical absorbing capacity of anthocyanins, J. Agric. Food Chem., 1997, vol. 45, pp. 304–309.

    Article  CAS  Google Scholar 

  6. Giusti, M.M., Rodriguez-Saona, L.E., and Wrolstad, R.E., Molar absorptivity and color characteristics of acylated and non-acylated pelargonidin-based anthocyanins, J. Agric. Food Chem., 1999, vol. 47, pp. 4631–4637.

    Article  CAS  Google Scholar 

  7. Xie, L., Wang, Z.H., Cheng, X.H., Gao, J.J., Zhang, Z.P., and Wang, L.J., 5-Aminolevulinic acid promotes anthocyanin accumulation in Fuji apples, Plant Growth Regul., 2013, vol. 69, pp. 295–303.

    Article  CAS  Google Scholar 

  8. Chen, L., Guo, Y., Bai, G., and Li, Y., Effect of 5-aminolevulinic acid and genistein on accumulation of polyphenol and anthocyanin in qinyang apples, J. Anim. Plant Sci., 2015, vol. 25, pp. 68–79.

    CAS  Google Scholar 

  9. Feng, X., An, Y., Zheng, J., Sun, M., and Wang, L., Proteomic and SSH analyses of ALA-promoted fruit coloration and evidence for the involvement of a MADS-BOX gene, MdMADS1,Front. Plant Sci., 2016, vol. 7: 1615.

    PubMed  PubMed Central  Google Scholar 

  10. Feng, X., Chang, J., Cheng, S.Y., Zhu, J., Li, L.L., Wang, Y., and Cheng, H., Promotive effect of 5-aminolevulinic acid on the antioxidant system in Ginkgo bil-oba leaves, Afr. J. Biotechnol., 2009, vol. 8, pp. 3769–3776.

    Google Scholar 

  11. Xu, F., Cheng, S., Zhu, J., Zhang, W., and Wang, Y., Effect of 5-aminolevulinic acid on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba,Not. Bot. Horti Agrobot. Cluj-Napoca, 2011, vol. 39, pp. 41–47.

    Article  Google Scholar 

  12. Averina, N.G. and Yaronskaya, E.B., Biosintez tetrapirrolov v rasteniyakh (Biosynthesis of Tetrapyrroles in Plants), Minsk: Belaruskaya Navuka, 2012.

  13. Beizai, Z., Sherbakov, R.A., and Averina, N.G., Response of nitrate reductase to exogenous application of 5-aminolevulinic acid in barley plants, J. Plant Growth Regul., 2014, vol. 33, pp. 745–750.

    Article  Google Scholar 

  14. Averina, N.G., Emel’yanova, A.V., Shcherbakov, R.A., Domanskaya, I.N., and Usatov, A.V., Induction of anthocyanin accumulation and status of protective system in winter rape plants treated with 5-aminolevulinic acid, Russ. J. Plant Physiol., 2017, vol. 64, pp. 310–318.

    Article  CAS  Google Scholar 

  15. Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1965, vol. 16, pp. 144–158.

    CAS  Google Scholar 

  16. Lee, J., Rennaker, C., and Wrolstad, R., Correlation of two anthocyanin methods: HPLC and spectrophotometric methods, Food Chem., 2008, vol. 110, pp. 782–786.

    Article  CAS  Google Scholar 

  17. Akinshina, N.G., Azizov, A.A., Karaseva, T.A., and Kloze, E., New possibilities for plant state, Sib. J. Ecol., 2008, vol. 2, pp. 249–254.

    Google Scholar 

  18. Jansson, S., Stefansson, H., Nystrom, U., Gustafsson, P., and Albertsson, P.-A., Antenna protein composition of PS I and PS II in thylakoid sub-domains, Biochim. Bi-ophys. Acta, 1997, vol. 1320, pp. 297–394.

    Article  CAS  Google Scholar 

  19. Edmands S. and Burton, R.S., Cytochrome C oxidase activity in interpopulation hybrids of a marine copepod: a test for nuclear–nuclear or nuclear–cytoplasmic coadaptation, Evolution, 1999, vol. 53, pp. 1972–1978.

    Article  CAS  Google Scholar 

  20. Ermakov, A.I., Arasimovich, V.V, Smirnova-Ikonnikova, M.I., Yarosh, N.P., and Lukovnikova, G.A., Metody biokhimicheskogo issledovaniya rastenii (Methods for the Biochemical Study of Plants), Leningrad: Kolos, 1972.

  21. Borovik, O.A., Grabel’nykh, O.I., Koroleva, N.A., and Pobezhimova, T.P., The relationships among an activity of the alternative pathway respiratory flux, a content of carbohydrates and a frost-resistance of winter wheat, J. Stress Biol. Biochem., 2013, vol. 9, no. 4, pp. 241–250.

    Google Scholar 

  22. Forni, E., Ghezzi, M., and Polesello, A., HPLC separation and fluorimetric estimation of chlorophylls and pheophytins in fresh and frozen peas, Chromatographia, 1988, vol. 26, pp. 120–124.

    Article  CAS  Google Scholar 

  23. Shemin, D., Delta-aminolevulinic acid degydrase from Rhodopseudomonas sphaeroides, in Methods in Enzymology, Colowick, S.P., Koplan, N.O., Eds., New York: Academic, 1962, vol. 5, pp. 883–884.

    Google Scholar 

  24. Chen, L., Guo, Y., Bai, G., and Li, Y., Effect of 5-aminolevulinic acid and genistein on accumulation of polyphenol and anthocyanin in 'Qinyang' apples, J. Anim. Plant Sci., 2015, vol. 25, pp. 68–79.

    CAS  Google Scholar 

  25. Guo, L., Cai, Z.X., Zhang, B.B., Xu, J.L., Song, H.F., and Ma, R.J., The mechanism analysis of anthocyanin accumulation in peach accelerated by ALA, Acta H-ortic., 2013, vol. 40, no. 6: 1043. https://doi.org/10.16420/j.issn.0513-353x.2013.06.004

    Article  CAS  Google Scholar 

  26. Nagahatenna, D.S.K., Langridge, P., and Whitford, R., Tetrapyrrole-based drought stress signaling, Plant Bi-otechnol. J., 2015, vol. 13, pp. 447–459.

    Article  CAS  Google Scholar 

  27. Larkin, R., Tetrapyrrole signaling in plants, Front. Plant Sci., 2016, vol. 7: 1586. https://doi.org/10.3389/fpls.2016.01586

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rogov, A.G., Sukhanova, E.I., Ural’skaya, L.A., Aliverdieva, D.A., and Zvyagil’skaya, R.A., Alternative oxidase: distribution, induction, properties, structure, regulation, and functions, Biochemistry (Moscow), 2014, vol. 79, no. 15, pp. 1615–1634. https://doi.org/10.1134/S0006297914130112

    Article  CAS  PubMed  Google Scholar 

  29. Cvetkovska, M. and Vanlerberghe, G.S., Alternative oxidase modulates leaf mitochondrial concentration of superoxide and nitric oxide, New Phytol., 2012, vol. 195, pp. 32–39.

    Article  CAS  Google Scholar 

  30. Duggan, J.X., Meller, E., and Gassman, M.L., Catabolism of 5-aminolevulinic acid to CO2 by etiolated barley leaves, Plant Physiol., 1982, vol. 69, pp. 19–22. https://doi.org/10.1104/pp.69.3.602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Belarusian Republican Foundation for Fundamental Research (grant no. B17MS-019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Averina.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

CONFLICT OF INTERESTS

The authors declare that they have no conflict of interests.

Additional information

Translated by A. Aver’yanov

Abbreviations: ALA—5-aminolevulinic acid; ALAD—5-aminolevulinate dehydratase; AOX—alternative oxidase; COX—cytochrome c-oxidase; PBG—porphobilinogen; PPC—pigment–protein complex of PSI or PSII; UPG III—uroporphyrinogen III.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averina, N.G., Yemelyanava, H.V., Sherbakov, R.A. et al. Photosynthesis and Oxygen Uptake Rate in Winter Rape Plants Treated with 5-Aminolevulinic Acid. Russ J Plant Physiol 66, 966–975 (2019). https://doi.org/10.1134/S1021443719060037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719060037

Keywords:

Navigation