Skip to main content
Log in

Influence of Macroelements’ Uneven Distribution on the Content of Hormones and Extension of the Roots in Wheat Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Increase in the level of mineral nutrition reduces the relative growth rate of the roots, which adversely affects the drought resistance of plants. This was not observed when fertilizers were locally applied. Local fertilizer treatment caused activation in the elongation of the roots that were not directly in contact with locally applied fertilizers. The goal of this study was identification of features of the association between hormone levels and growth of Triticum durum Desf. seedlings under the influence of changes in the level and distribution of mineral nutrition elements in the environment. For this purpose, a model with a split root system imitating local fertilization was used, when part of the roots is in contact with high (HC) concentration of macronutrients and the other part is in contact with a low concentration of macronutrients (LC). It was shown for the first time using immunohistochemical localization that the inhibition of elongation of HC roots occurred at the increased content of cytokinins in the cells of the root tips, which can explain the inhibition of root elongation under the influence of an increased concentration of mineral nutrition elements. Differences in the content of ABA in the shoots of plants grown in the presence of uneven (heterogeneous, Het-plants) and uniform (homogeneous, Hom-plants) distribution of macronutrients were not found. This indicates that there is no stress effect of a local increase in the osmotic concentration in the root area (HC) on the plant in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Forde, B. and Lorenzo, H., The nutritional control of root development, Plant Soil, 2001, vol. 232, pp. 51–68.

    Article  CAS  Google Scholar 

  2. Chun, L., Mi, G., Li, J., Chen, F., and Zhang, F., Genetic analysis of maize root characteristics in response to low nitrogen stress, Plant Soil, 2005, vol. 276, pp. 369–382.

    Article  CAS  Google Scholar 

  3. Agren, G.I. and Franklin, O., Root : shoot ratios, optimization and nitrogen productivity, Ann. Bot., 2003, vol. 92, pp. 795–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trapeznikov, V.K., Ivanov, I.I., and Kudoyarova, G.R., Effect of heterogeneous distribution of nutrients on root growth, ABA content and drought resistance of wheat plants, Plant Soil, 2003, vol. 252, pp. 207–214.

    Article  CAS  Google Scholar 

  5. Specht, J.E., Chase, K., Macrander, M., Graef, G.L., Chung, J., Markwell, J.P., Germann, M., Orf, J.H., and Lark, K.G., Soybean response to water: a QTL analysis of drought tolerance, Crop Sci., 2001, vol. 41, pp. 493–509.

    Article  CAS  Google Scholar 

  6. Ivanov, I.I., Endogenous auxins and branching of wheat roots gaining nutrients from isolated compartments, Russ. J. Plant Physiol., 2009, vol. 56, pp. 219–223.

    Article  CAS  Google Scholar 

  7. Kudoyarova, G.R., Veselov, D.S., Dodd, I.C., Rothwell, S.A., and Veselov, S.Yu., Common and specific responses to availability of mineral nutrients and water, J. Exp. Bot., 2015, vol. 66, pp. 2133–2144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sharipova, G.V., Veselov, D.S., Kudoyarova, G.R., Timergalin, M.D., and Wilkinson, S., Effect of ethylene perception inhibitor on growth, water relations, and abscisic acid content in wheat plants under water deficit, Russ. J. Plant Physiol., 2012, vol. 59, pp. 573–580.

    Article  CAS  Google Scholar 

  9. Veselov, S.U., Kudoyarova, G.R., Egutkin, N.L., Gyuli-Zade, V.G., Mustafina, A.R., and Kof, E.K., Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3‑acetic acid, Physiol. Plant., 1992, vol. 86, pp. 93–96.

    Article  CAS  Google Scholar 

  10. Veselov, S.Yu., Valcke, R., van Onckelen, H., and Kudoyarova, G.R., Cytokinin content and location in the leaves of the wild-type and transgenic tobacco plants, Russ. J. Plant Physiol., 1999, vol. 46, pp. 26–31.

    CAS  Google Scholar 

  11. Kudoyarova, G.R., Korobova, A.V., Akhiyarova, G.R., Arkhipova, T.N., Zaytsev, D.Yu., Prinsen, E., Egutkin, N.L., Medvedev, S.S., and Veselov, S.Yu., Accumulation of cytokinins in roots and their export to the shoots of durum wheat plants treated with the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), J. Exp. Bot., 2014, vol. 65, pp. 2287–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dewitte, W., Chiappetta, A., Azmi, A., Witters, E., Strnad, M., Rembur, J., Noin, M., Chriqui, D., and van Onckelen, H., Dynamics of cytokinins in apical shoot meristems of a day-neutral tobacco during floral transition and flower formation, Plant Physiol., 1999, vol. 119, pp. 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharipova, G., Veselov, D., Kudoyarova, G., Fricke, W., Dodd, I.C., Katsuhara, M., Furuichi, T., Ivanov, I., and Veselov, S., Exogenous application of abscisic acid (ABA) increases root and cell hydraulic conductivity and abundance of some aquaporin isoforms in the ABA-deficient barley mutant Az34, Ann. Bot., 2016, vol. 118, pp. 777–785.

    Article  CAS  PubMed Central  Google Scholar 

  14. Vysotskaya, L.B., Akhiyarova, G.R., Sharipova, G.V., Dedova, M.A., Veselov, S.Yu., Zaitsev, D.Yu., and Kudoyarova, G.R., The influence of local IPT gene induction in roots on content of cytokinins in cells of tobacco leaves, Cell Tissue Biol., 2015, vol. 9, pp. 127–132.

    Article  Google Scholar 

  15. Kudoyarova, G.R., Trapeznikov, V.K., and Ivanov, I.I., Hydraulic conductivity of roots in heterogeneous distribution of mineral feed elements, Izv. Ufa Nauch. Tsentra, Ross. Akad. Nauk, 2013, no. 2, pp. 33–37.

  16. Overvoorde, P., Fukaki, H., and Beeckman, T., Auxin control of root development, Cold Spring Harb. Perspect. Biol., 2010, vol. 2, no. 6: a001537. https://doi.org/10.1101/cshperspect.a001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vysotskaya, L.B., Korobova, A.V., Veselov, S.Yu., Dodd, I.C., and Kudoyarova, G.R., ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient deprived durum wheat, Funct. Plant Biol., 2009, vol. 36, pp. 66–72.

    Article  CAS  Google Scholar 

  18. Ivanov, V.B. and Filin, A.N., Cytokinins regulate root growth through its action on meristematic cell proliferation but not on the transition to differentiation, Funct. Plant Biol., 2018, vol. 45, pp. 215–221.

    Article  CAS  Google Scholar 

  19. Korobova, A.V., Vysotskaya, L.B., Vasinskaya, A.N., Kuluev, B.R., Veselov, S.Yu., and Kudoyarova, G.R., Dependence of root biomass accumulation on the content and metabolism of cytokinins in ethylene-insensitive plants, Russ. J. Plant Physiol., 2016, vol. 63, pp. 597–603.

    Article  CAS  Google Scholar 

  20. Kiba, T., Kudo, T., Kojima, M., and Sakakibara, H., Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin, J. Exp. Bot., 2011, vol. 62, pp. 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  21. Takei, K., Sakakibara, H., Taniguchi, M., and Sugiyama, T., Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator, Plant Cell Physiol., 2001, vol. 42, pp. 85–93.

    Article  CAS  PubMed  Google Scholar 

  22. Miyawaki, K., Matsumoto-Kitano, M., and Kakimoto, T., Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate, Plant J., 2004, vol. 37, pp. 128–138.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out with the partial support of the Russian Foundation for Basic Research (project no. 18-04-00460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ivanov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Abbreviations: HC—roots in the nutrition medium with high concentration; Het-plants—plants on heterogeneous medium; Hom-plants—plants on homogeneous medium; LC—roots in the nutrition medium with low concentration; H-A—Hoagland-Arnon nutrient medium I; MNU—mineral nutrition elements.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobova, A.V., Ivanov, I.I., Akhiyarova, G.R. et al. Influence of Macroelements’ Uneven Distribution on the Content of Hormones and Extension of the Roots in Wheat Plants. Russ J Plant Physiol 66, 748–755 (2019). https://doi.org/10.1134/S1021443719050108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050108

Keywords:

Navigation