Skip to main content
Log in

Expression Profiles and Post-Translational Modifications of Phosphoenolpyruvate Carboxylase Isozymes of Bienertia sinuspersici during Leaf Development

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Phosphoenolpyruvate carboxylase (PEPC) is the primary acceptor of carbon dioxide in C4 photosynthesis. Three isozymes of PEPC: PEPC1, PEPC2, and PEPC3, in the single cell, C4 plant Bienertiasinuspersici Akhani were determined in this study. Differential expressions of these isoforms were observed at different stages of leaf development. Amino acid sequence alignment revealed that PEPC1, PEPC2, and PEPC3 had characteristics of C3-C4 PEPC type, C4 PEPC, and C3 PEPC, respectively. Gene expression profiles showed that PEPC3 was highly expressed in young leaves while PEPC1 and PEPC2 were more expressed in intermediate and mature leaves, respectively. Using immunoblotting, we also assessed tissue-specific expression and post-translational modifications (PTMs) of PEPC in B. sinuspersici. During leaf maturation, phosphorylation at Ser 11 and monoubiquitination at Lys 629 were highly increased. The phosphorylation pattern on PEPC was diurnally regulated but monoubiquitination was not. Moreover, dimorphic chloroplasts from B. sinuspersici chlorenchyma cell of mature leaf were isolated to study spatial localization of PEPC by PTM. Monoubiquitinated PEPC were specifically interacting with peripheral chloroplasts. These results indicated that phosphorylation and monoubiquitination on PEPC were mutually exclusive as well as affecting spatial localization in single cell C4 plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. O’Leary, M.H., Phosphoenolpyruvate carboxylase: an enzymologist’s view, Annu. Rev. Plant Physiol., 1982, vol. 33, pp. 297–315.

    Article  Google Scholar 

  2. O’Leary, B., Rao, S.K., Kim, J., and Plaxton, W.C., Bacterial-type phosphoenolpyruvate carboxylase (PEPC) functions as a catalytic and regulatory subunit of the novel class-2 PEPC complex of vascular plants, J. Biol. Chem., 2009, vol. 284, pp. 24797–24805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muramatsu, M., Suzuki, R., Yamazaki, T., and Miyao, M., Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme, Plant Cell Physiol., 2014, vol. 56, pp. 468–480.

    Article  CAS  PubMed  Google Scholar 

  4. Rivoal, J., Trzos, S., Gage, D.A., Plaxton, W.C., and Turpin, D.H., Two unrelated phosphoenolpyruvate carboxylase polypeptides physically interact in the high molecular mass isoforms of this enzyme in the unicellular green alga Selenastrum minutum, J. Biol. Chem., 2001, vol. 276, pp. 12588–12597.

    Article  CAS  PubMed  Google Scholar 

  5. Izui, K., Matsumura, H., Furumoto, T., and Kai, Y., Phosphoenolpyruvate carboxylase: a new era of structural biology, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 69–84.

    Article  CAS  PubMed  Google Scholar 

  6. Masumoto, C., Miyazawa, S.I., Ohkawa, H., Fukuda, T., Taniguchi, Y., Murayama, S., Kusano, M., Saito, K., Fukayama, H., and Miyao, M., Phosphoenolpyruvate carboxylase intrinsically located in the chloroplast of rice plays a crucial role in ammonium assimilation, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 5226–5231.

    Article  PubMed  Google Scholar 

  7. Latzko, E. and Kelly, G.J., The many-faceted function of phosphoenolpyruvate carboxylase in C3 plants, Physiol. Veg., 1983, vol. 21, pp. 805–815.

    CAS  Google Scholar 

  8. Takahashi-Terada, A., Kotera, M., Ohshima, K., Furumoto, T., Matsumura, H., Kai, Y., and Izui, K., Maize phosphoenolpyruvate carboxylase: mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation, J. Biol. Chem., 2005, vol. 280, pp. 11798–11806.

    Article  CAS  PubMed  Google Scholar 

  9. Chollet, R., Vidal, J., and O’Leary, M.H., Phosphoenolpyruvate carboxylase: a ubiquitous, highly regulated enzyme in plants, Annu. Rev. Plant Biol., 1996, vol. 47, pp. 273–298.

    Article  CAS  Google Scholar 

  10. Vidal, J. and Chollet, R., Regulatory phosphorylation of C4 PEP carboxylase, Trends Plant Sci., 1997, vol. 2, pp. 230–237.

    Article  Google Scholar 

  11. O'Leary, B., Fedosejevs, E.T., Hill, A.T., Bettridge, J., Park, J., Rao, S.K., Leach, C.A., and Plaxton, W.C., Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L., J. Exp. Bot., 2011, vol. 62, pp. 5485–5495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uhrig, R.G., She, Y.M., Leach, C.A., and Plaxton, W.C., Regulatory monoubiquitination of phosphoenolpyruvate carboxylase in germinating castor oil seeds, J. Biol. Chem., 2008, vol. 283, pp. 29650–29657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Voznesenskaya, E.V., Koteyeva, N.K., Chuong, S.D., Akhani, H., Edwards, G.E., and Franceschi, V.R., Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycloptera (Chenopodiaceae), Am. J. Bot., 2005, vol. 92, pp. 1784–1795.

    Article  CAS  PubMed  Google Scholar 

  14. Lara, M.V., Offermann, S., Smith, M., Okita, T.W., Andreo, C.S., and Edwards, G.E., Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions, Plant Physiol., 2008, vol. 148, pp. 593–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Offermann, S., Friso, G., Doroshenk, K.A., Sun, Q., Sharpe, R.M., Okita, T.W., Wimmer, D., Edwards, G.E., and van Wijk, K.J., Developmental and subcellular organization of single-cell C4 photosynthesis in Bienerti-a sinuspersici determined by large-scale proteomics and cDNA assembly from 454 DNA sequencing, J. Proteome Res., 2015, vol. 14, pp. 2090–2108.

    Article  CAS  PubMed  Google Scholar 

  16. Lung, S.C., Yanagisawa, M., and Chuong, S.D., Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici, Plant Methods, 2012, vol. 8: 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Avasthi, U.K., Izui, K., and Raghavendra, A.S., Interplay of light and temperature during the in planta modulation of C4 phosphoenolpyruvate carboxylase from the leaves of Amaranthus hypochondriacus L.: diurnal and seasonal effects manifested at molecular levels, J. Exp. Bot., 2010, vol. 62, pp. 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Westhoff, P. and Gowik, U., Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins: a case study with the genus Flaveria, Ann. Bot., 2004, vol. 93, pp. 13–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bläsing, O.E., Westhoff, P., and Svensson, P., Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine residue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics, J. Biol. Chem., 2000, vol. 275, pp. 27917–27923.

  20. Matsumura, H., Xie, Y., Shirakata, S., Inoue, T., Yoshinaga, T., Ueno, Y., Izui, K., and Kai, Y., Crystal structures of C4 form maize and quaternary complex of E. coli phosphoenolpyruvate carboxylases, Structure, 2002, vol. 10, pp. 1721–1730.

    Article  CAS  PubMed  Google Scholar 

  21. Engelmann, S., Bläsing, O.E., Gowik, U., Svensson, P., and Westhoff, P., Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria—a gradual increase from C3 to C4 characteristics, Planta, 2003, vol. 217, pp. 717–725.

    Article  CAS  PubMed  Google Scholar 

  22. Jeanneau, M., Vidal, J., Gousset-Dupont, A., Lebouteiller, B., Hodges, M., Gerentes, D., and Perez, P., Manipulating PEPC levels in plants, J. Exp. Bot., 2002, vol. 53, pp. 1837–1845.

    Article  CAS  PubMed  Google Scholar 

  23. Schnell, J.D. and Hicke, L., Non-traditional functions of ubiquitin and ubiquitin-binding proteins, J. Biol. Chem., 2003, vol. 278, pp. 35857–35860.

    Article  CAS  PubMed  Google Scholar 

  24. Ruiz-Ballesta, I., Feria, A.B., Ni, H., She, Y.M., Plaxton, W.C., and Echevarría, C., In vivo monoubiquitination of anaplerotic phosphoenolpyruvate carboxylase occurs at Lys624 in germinating sorghum seeds, J. Exp. Bot., 2013, vol. 65, pp. 443–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Monreal, J.A., McLoughlin, F., Echevarría, C., García-Mauriño, S., and Testerink, C., Phosphoenolpyruvate carboxylase from C4 leaves is selectively targeted for inhibition by anionic phospholipids, Plant Physiol., 2010, vol. 152, pp. 634–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Testerink, C. and Munnik, T., Molecular, cellular, and physiological responses to phosphatidic acid formation in plants, J. Exp. Bot., 2011, vol. 62, pp. 2349–2361.

    Article  CAS  PubMed  Google Scholar 

  27. Fukayama, H., Tsuchida, H., Agarie, S., Nomura, M., Onodera, H., Ono, K., Lee, B.H., Hirose, S., Toki, S., Ku, M.S., and Makino, A., Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice, Plant Physiol., 2001, vol. 127, pp. 1136–1146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gupta, S.K., Ku, M.S., Lin, J.H., Zhang, D., and Edwards, G.E., Light/dark modulation of phosphoenolpyruvate carboxylase in C3 and C4 species, Photosynth. Res., 1994, vol. 42, pp. 133–143.

    Article  CAS  PubMed  Google Scholar 

  29. Bailey, K.J., Gray, J.E., Walker, R.P., and Leegood, R.C., Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO2 during C4 photosynthesis, Plant Physiol., 2007, vol. 144, pp. 479–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Furumoto, T., Izui, K., Quinn, V., Furbank, R.T., and von Caemmerer, S., Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C4 species Flaveria bidentis, Plant Physiol., 2007, vol. 144, pp. 1936–1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Plaxton for the antisera against PEPC and phospho-PEPC and Dr. Offermann for some helpful discussion.

Funding

This work was carried out with the support of “Cooperative Research Program for Agriculture Science and Technology Development” (project no. PJ01095306) Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Park.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

ADDITIONAL INFORMATION

The article is published in the original.

Additional information

Abbreviations: CC—central cell; PC—peripheral cell; PEPC—phosphoenolpyruvate carboxylase; PTM—post-translational modification; PPDK—phosphoenolpyruvate dikinase.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caburatan, L., Kim, J. & Park, J. Expression Profiles and Post-Translational Modifications of Phosphoenolpyruvate Carboxylase Isozymes of Bienertia sinuspersici during Leaf Development. Russ J Plant Physiol 66, 738–747 (2019). https://doi.org/10.1134/S1021443719050042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050042

Keywords:

Navigation