Skip to main content
Log in

The Ca2+-ATPase in Legume Root Nodule Peribacteroid Membrane as a Potential Key Determinant of Ca-Dependent Regulation of Symbiosome Functioning

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Certain aspects of Ca-dependent regulation of symbiosomes functioning mediated by the operation of Ca2+-translocating ATPase on the symbiosome membrane (SM) were considered. As follows from the results recently obtained by us, the mechanism underlying the action of this calcium pump exhibits a certain functional feature caused by that transfer by it of calcium ion through the SM is closely coupled with transmembrane translocation through the same membrane but in opposite direction of H+ ions. The data here outlined show that such the cation-exchanged mechanism of the Ca2+-ATPase operation can putatively lead to corresponding modulation or maintenance of both ionic and redox homeostasis of the symbiosome space (SS) around bacteroids at a proper level and thereby to the regulation of symbiosomes functioning. It is suggested that based on the same mechanism inherent function of the enzyme in question is associated with its involvement in symbiotic partner cells signaling as well. All these potential activities of the Ca2+-ATPase lead to the important question whether it is the factor determining substantial functions of symbiosomes. Although it is evident that research an answer to this question is a complex enough experimental problem, its solution may give significant contribution to elucidating mechanisms of Ca-dependent regulation of the processes occurring in mature symbiosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Plieth, C., Calcium: just another regulator in the machinery of life? Ann. Bot., 2005, vol. 96, pp. 1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kleist, T.J. and Luan, S., Constant change: dynamic regulation of membrane transport by calcium signaling networks keeps plants in tune with their environment, Plant Cell Environ., 2016, vol. 39, pp. 467–481.

    Article  CAS  PubMed  Google Scholar 

  3. Andreev, I.M., Emerging evidence for potential role of Ca2+-ATPase-mediated calcium accumulation in symbiosomes of infected root nodule cells, Funct. Plant Biol., 2017, vol. 44, pp. 955–960.

    Article  CAS  Google Scholar 

  4. Udvardi, M.K. and Day, D.A., Metabolite transport across symbiotic membranes of legume nodules, Annu. Rev. Plant Physiol., 1997, vol. 48, pp. 493–523.

    Article  CAS  Google Scholar 

  5. Andreev, I.M., Dubrovo, P.N., Krylova, V.V., Andreeva, I.N., Korenkov, V.D., Sorokin, E.M., and Izmailov, S.F., Characterization of ATP-hydrolizing and ATP-driven proton-translocating activities associated with the peribacteroid membrane of Lupinus luteus L., J. Plant Physiol., 1997, vol. 151, pp. 563–569.

    Article  CAS  Google Scholar 

  6. Andreev, I.M., Dubrovo, P.N., Krylova, V.V., and Izmailov, S.F., Calcium uptake by symbiosomes and the peribacteroid vesicles isolated from yellow lupin root nodules, J. Plant Physiol., 1998, vol. 151, pp. 203–211.

    Google Scholar 

  7. Andreev, I.M., Dubrovo, P.N., Krylova, V.V., and Izmailov, S.F., Functional identification of ATP-driven Ca2+ pump in the peribacteroid membrane of broad bean root nodules, FEBS Lett., 1999, vol. 447, pp. 49–52.

    Article  CAS  PubMed  Google Scholar 

  8. Pierre, O., Engler, G., Hopkins, J., Brau, F., Boncompagni, E., and Herouart, D., Peribacteroid space acidification: a marker of mature bacteroid functioning in Medicago truncatula nodules, Plant Cell Environ., 2013, vol. 36, pp. 2059–2070.

    CAS  PubMed  Google Scholar 

  9. Matamoros, M.A., Dalton, D.A., Ramos, J., Clemente, M.R., Rubio, M.C., and Becana, M., Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis, Plant Physiol., 2003, vol. 133, pp. 499–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De la Peña, T.C., Fedorova, E., Pueyo, J.J., and Lucas, M.M., The symbiosome: legume and rhizobia co-evolution toward a nitrogen-fixing organelle? Front. Plant Sci., 2017, vol. 8: 2229. https://doi.org/10.3389/fpls.2017.02229

  11. Gazarini, M.L., Thomas, A.P., Pozzan, T., and Garcia, C.R.S., Calcium signaling in a low calcium environment; how the intracellular malaria parasite solves the problem, J. Cell Biol., 2003, vol. 161, pp. 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kazmierczak, J., Kempe, S., and Kremer, B., C-alcium in the early evolution of living systems: bi-ohistorical approach, Curr. Org. Chem., 2013, vol. 17, pp. 1738–1750.

    Article  CAS  Google Scholar 

  13. Andreev, I.M., Functions of the vacuole in higher plant cells, Russ. J. Plant Physiol., 2001, vol. 48, pp. 672–680.

    Article  CAS  Google Scholar 

  14. Krylova, V.V., Andreev, I.M., Zartdinova, R.F., and Izmailov, S.F., Biochemical characteristics of the Ca2+ pumping ATPase in the peribacteroid membrane from broad bean root nodules, Protoplasma, 2013, vol. 250, pp. 531–538.

    Article  CAS  PubMed  Google Scholar 

  15. Krylova, V.V., Andreev, I.M., Zartdinova, R.F., and Izmailov, S.F., Ca2+-ATPase in the symbiosome membrane from broad bean root nodules: further evidence for its functioning as ATP-driven Ca2+/H+ exchanger, Acta Physiol. Plant., 2017, vol. 39, pp. 247–254.

    Article  CAS  Google Scholar 

  16. Holton, M.L., Wang, W., Emerson, M., Neyses, L., and Armesilla, A.L., Plasma membrane calcium ATPases as novel regulators of signal transduction pathways, World J. Biol. Chem., 2010, vol. 1, pp. 201–208.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Strehler, E.E., Caride, A.J., Filoteo, A.G., Xiong, Y., Penniston, J.T., and Enyedi, A., Plasma membrane Ca2+-ATPases as dynamic regulators of cellular calcium handling, Ann. N.Y. Sci., 2007, vol. 1099, pp. 226–236.

    Article  CAS  Google Scholar 

  18. Jones, H.E., Holland, I.B., and Campbell, A.K., Direct measurements of free Ca2+ shows different regulation of Ca2+ between the periplasm and cytosol of Escherichia coli, Cell Calcium, 2002, vol. 32, pp. 183–192.

    Article  CAS  PubMed  Google Scholar 

  19. Dominguez, D.C., Guragain, M., and Patrauchan, M., Calcium binding proteins and calcium signaling in prokaryotes, Cell Calcium, 2015, vol. 57, pp. 151–165.

    Article  CAS  PubMed  Google Scholar 

  20. Plattner, H. and Verkhratsky, A., The ancient roots of calcium signaling evolutionary tree, Cell Calcium, 2015, vol. 57, pp. 123–132.

    Article  CAS  PubMed  Google Scholar 

  21. Preisig, O., Zufferrey, R., Thony-Meyer, L., Appleby, C.A., and Henneke, H., A high-affinity cbb 3-type cytochrome oxidase terminates the symbiosis-specific respiratory chain of Bradyrhizobium japonicum, J. Bacteriol.,1996, vol. 178, pp. 1532–1538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poovaiah, B.W. and Du, L., Calcium signaling: decoding mechanism of calcium signatures, New Phytol., 2018, vol. 217, pp. 1598–1609.

    Article  Google Scholar 

  23. De Marco, S.J., Chika, M.C., and Strehler, E.E., Plasma membrane Ca2+-ATPase isoform 2b interacts with Na+/H+ exchanger regulator factor 2 in apical plasma membranes, J. Biol. Chem., 2002, vol. 277, pp. 10506–10511.

    Article  CAS  Google Scholar 

  24. Obara, K., Miyashima, N., Xu, C., Toyashima, I., Sugita, Y., Inesi, G., and Toyashima, C., Structural role of countertransport in Ca2+ pump crystal structure in the absence of Ca2+, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 14489–14496.

    Article  CAS  PubMed  Google Scholar 

  25. Thomas, R.C., The plasma membrane calcium ATPase (PMCA) of neurons is electroneutral and exchanges 2H+ for each Ca2+ or Ba2+ ion extruded, J. Physiol., 2009, vol. 587, pp. 315–327.

    Article  CAS  PubMed  Google Scholar 

  26. Krylova, V.V., Zartdinova, R.F., Andreev, I.M., and Izmailov, S.F., Ca2+/H+ antiport as a possible mechanism of the Ca2+-translocating ATPase functioning in vesicles of bean root nodule symbiosome membrane, Biochemistry (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2016, vol. 10, pp. 218–222.

    Google Scholar 

  27. Valentine, J.S. and Curtis, A.B., A convenient preparation of solutions of superoxide anion and the reaction of superoxide anion with copper complex, J. Am. Chem. Soc., 1975, vol. 97, pp. 224–226.

    Article  CAS  PubMed  Google Scholar 

  28. Chang, C., Damiani, I., Puppo, A., and Frendo, P., Redox changes during the legume-rhizobium symbiosis, Mol. Plant, 2009, vol. 2, pp. 370–377.

    Article  CAS  PubMed  Google Scholar 

  29. Chen, X., Bao, H., Guo, J., Jia, W., Tai, F., Nie, L., Jiang, P., Feng, Y., Lv, S., and Li, Y., Na+/H+ exchanger 1 participates in tobacco disease against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidant system, J. Exp. Bot., 2014, vol. 65, pp. 6107–6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahmadi, H., Corsa, M., Weber, M., Verbruggen, N., and Clemens, S., CAX1 suppresses Cd-induced generation of reactive oxygen species in Arabidopsis halleri, Plant Cell Environ., 2018, vol. 41, pp. 2435–2448.

    Article  CAS  PubMed  Google Scholar 

  31. Jones, K.M., Kobayashi, M., Davies, B.W., Taga, M.E., and Walker, G.C., How rhizobial symbiont invade plants: the Sinorhizobium–Medicago model, Nat. Rev. Microbiol., 2007, vol. 5, pp. 619–633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Behera, S., Zhaolong, X., Luoni, L., Bonza, M.C., Doculla, F.G., de Michelis, M.I., Morris, R.J., Schwarzlander, M., and Costa, A., Cellular Ca2+ signals generate defined pH signatures in plants, Plant Cell, 2018, vol. 30, pp. 2704–2719. https://doi.org/10.1105/tpc.18.00655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Andreev I.M. wrote the article, while Krylova V.V. prepared the figure for it and participated in discussion of a number of issues raised in the present work.

Corresponding author

Correspondence to I. M. Andreev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: BM—bacteroid membrane; SM—symbiosome membrane; SOD—superoxide dismutase; SS—symbiosome space.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, I.M., Krylova, V.V. The Ca2+-ATPase in Legume Root Nodule Peribacteroid Membrane as a Potential Key Determinant of Ca-Dependent Regulation of Symbiosome Functioning. Russ J Plant Physiol 66, 673–678 (2019). https://doi.org/10.1134/S1021443719050030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050030

Keywords:

Navigation