Skip to main content
Log in

Vanillic Acid Mitigates Dehydration Stress Responses in Blueberry Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study investigated whether vanillic acid (VA) mitigated dehydration stress responses in blueberry (Vaccinium corymbosum L.), and analyzed potential mechanisms mediating this activity. We pretreated 2‑year-old blueberry plants with 40 μM VA for two days, and then induced dehydration stress by irrigating with nutrient solution containing 10% (w/v) polyethylene glycol 6000 for two days. VA pretreatment increased the transcript levels of genes encoding eight antioxidant enzymes in leaves, including iron superoxide dismutase, chloroplast copper/zinc superoxide dismutase, cytoplasmic copper/zinc superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase, glutathione reductase, and dehydroascorbate reductase. These increased transcript levels were consistent with enhanced activities of superoxide dismutase and glutathione peroxidase and elevated contents of reduced glutathione and ascorbate. Subjecting the V--A‑treated blueberry to dehydration stress further enhanced expression levels of these genes, compared with the control plants subjected only to dehydration stress, increased the contents of endogenous VA, proline, and soluble sugars, enhanced the relative water content and osmotic potential, and reduced the levels of superoxide anion, hydrogen peroxide, and malondialdehyde. So pretreatment of blueberry with VA reduces lipid peroxidation and mitigates dehydration stress by enhancing the endogenous VA content, activating the expression of antioxidant enzyme genes, and increasing the levels of proline and soluble sugars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Wan, Y.Y., Chen, S.Y., Huang, Y.W., Li, X., Zhang, Y., Wang, X.J., and Bai, J.G., Caffeic acid pretreatment enhances dehydration tolerance in cucumber seedlings by increasing antioxidant enzyme activity and proline and soluble sugar contents, Sci. Hort., 2014, vol. 173, pp. 54–64.

    Article  CAS  Google Scholar 

  2. Prince, P.S.M., Rajakumar, S., and Dhanasekar, K., Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats, Eur. J. Pharmacol., 2011, vol. 668, pp. 233–240.

    Article  CAS  Google Scholar 

  3. Sevgi, K., Tepe, B., and Sarikurkcu, C., Antioxidant and DNA damage protection potentials of selected phenolic acids, Food Chem. Toxicol., 2015, vol. 77, pp. 12–21.

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, S., Prahalathan, P., Saravanakumar, M., and Raja, B., Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats, Eur. J. Pharmacol., 2014, vol. 743, pp. 117–125.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Z.J., Zhang, X.L., Bai, J.G., Suo, B.X., Xu, P.L., and Wang, L., Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves, Sci. Hort., 2009, vol. 121, pp. 138–143.

    Article  CAS  Google Scholar 

  6. Li, D.M., Nie, Y.X., Zhang, J., Yin, J.S., Li, Q., Wang, X.J., and Bai, J.G., Ferulic acid pretreatment enhances dehydration-stress tolerance of cucumber seedlings, Biol. Plant., 2013, vol. 57, pp. 711–717.

    Article  CAS  Google Scholar 

  7. Sun, W.J., Nie, Y.X., Gao, Y., Dai, A.H., and Bai, J.G., Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought-stressed cucumber leaves, Acta Physiol. Plant., 2012, vol. 34, pp. 641–655.

    Article  CAS  Google Scholar 

  8. Barrs, H.D. and Weatherley, P.E., A re-examination of the relative turgidity technique for estimating water deficit in leaves, Aust. J. Biol. Sci., 1962, vol. 15, pp. 413–428.

    Article  Google Scholar 

  9. Bajji, M., Lutts, S., and Kinet, J.M., Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions, Plant Sci., 2001, vol. 160, pp. 669–681.

    Article  CAS  PubMed  Google Scholar 

  10. Dhindsa, R.S., Plumb-Dhindsa, P., and Thorpe, T.A., Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase, J. Exp. Bot., 1981, vol. 32, pp. 93–101.

    Article  CAS  Google Scholar 

  11. Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    Article  CAS  PubMed  Google Scholar 

  12. Bernt, E. and Bergmeyer, H.U., Inorganic peroxides, in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1974, pp. 2246–2248.

    Google Scholar 

  13. Yu, K., Zhu, K., Ye, M., Zhao, Y., Chen, W., and Guo, W., Heat tolerance of highbush blueberry is related to the antioxidative enzymes and oxidative protein-repairing enzymes, Sci. Hort., 2016, vol. 198, pp. 36–43.

    Article  CAS  Google Scholar 

  14. Hwang, S.Y., Lin, H.W., Chern, R.H., Lo, H.F., and Li, L., Reduced susceptibility to waterlogging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato, Plant Growth Regul., 1999, vol. 27, pp. 167–172.

    Article  CAS  Google Scholar 

  15. Xue, T., Hartikainen, H., and Piironen, V., Antioxidative and growth-promoting effect of selenium on senescing lettuce, Plant Soil, 2001, vol. 237, pp. 55–61.

    Article  CAS  Google Scholar 

  16. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  17. Guri, A., Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone, Can. J. Plant Sci., 1983, vol. 63, pp. 733–737.

    Article  CAS  Google Scholar 

  18. Kampfenkel, K., van Montagu, M., and Inzé, D., Extraction and determination of ascorbate and dehydroascorbate from plant tissue, Anal. Biochem., 1995, vol. 225, pp. 165–167.

    Article  CAS  PubMed  Google Scholar 

  19. Yemm, E.W. and Willis, A.J., The estimation of carbohydrates in plant extracts by anthrone, Biochem. J., 1954, vol. 57, pp. 508–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 2013, vol. 39, pp. 205–207.

    Article  Google Scholar 

  21. Shi, Y., Zhang, Y., Han, W.H., Feng, R., Hu, Y.H., Guo, J., and Gong, H.J., Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L., Front. Plant Sci., 2016, vol. 7: 196.

    PubMed  PubMed Central  Google Scholar 

  22. Guler, N.S. and Pehlivan, N., Exogenous low-dose hydrogen peroxide enhances drought tolerance of soybean (Glycine max L.) through inducing antioxidant system, Acta Biol. Hung., 2016, vol. 67, pp. 169–183.

    Article  CAS  PubMed  Google Scholar 

  23. Terzi, R., Güler, N.S., Güven, F.G., and Kadioglu, A., Alpha lipoic acid treatment induces the antioxidant system and ameliorates lipid peroxidation in maize seedlings under osmotic stress, Arch. Biol. Sci., 2018, vol. 70, pp. 503-511.

    Article  Google Scholar 

  24. Zhang, Y., Wang, X.J., Chen, S.Y., Guo, L.Y., Song, M.L., Feng, H., Li, C., and Bai, J.G., Bacillus methylotrophicus isolated from the cucumber rhizosphere degrades ferulic acid in soil and affects antioxidant and rhizosphere enzyme activities, Plant Soil, 2015, vol. 392, pp. 309–321.

    Article  CAS  Google Scholar 

  25. Hussein, Y., Amin, G., and Gahin, H., Antioxidant activities during drought stress resistance of sesame (Sesamum indicum L.) plant by salicylic acid and kinetin, Res. J. Bot., 2016, vol. 11, pp. 1–8.

    Article  CAS  Google Scholar 

  26. Ghareib, H.R.A., Abdelhamed, M.S., and Ibrahim, O.H., Antioxidative effects of the acetone fraction and vanillic acid from Chenopodium murale on tomato plants, Weed Biol. Manag., 2010, vol. 10, pp. 64–72.

    Article  CAS  Google Scholar 

  27. Seabra, A.B. and Oliveira, H.C., How nitric oxide donors can protect plants in a changing environment: what we know so far and perspectives, AIMS Mol. Sci., 2016, vol. 3, pp. 692–718.

    Article  CAS  Google Scholar 

  28. Wang, X.Y., Zhang, L.S., Zhang, Y.N., Bai, Z.Q., Liu, H., and Zhang, D.P., Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Ni-cotiana benthamiana, PLoS One, 2017, vol. 12: e0171340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ben-Hayyim, G., Faltin, Z., Gepstein, S., Camoin, L., Strosberg, A.D., and Eshdat, Y., Isolation and characterization of salt-associated protein in citrus, Plant Sci., 1993, vol. 88, pp. 129–140.

    Article  CAS  Google Scholar 

  30. Wang, Y., Ying, Y., Chen, J., and Wang, X., Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance, Plant Sci., 2004, vol. 167, pp. 671–677.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Special Fund for Forestry Scientific Research in the Public Interest (project no. 201204412) and China Scholarship Council (project no. 201809135004).

Author information

Authors and Affiliations

Authors

Contributions

Authors Y.Q. An, L. Sun, X.J. Wang, and R. Sun contributed equally to this paper.

Corresponding author

Correspondence to J. G. Bai.

Ethics declarations

The authors declared that they have no conflicts of interest to this work. This article does not contain any studies involving animals or human participants as objects of research.

Additional information

Abbreviations: APX—ascorbate peroxidase; AsA—ascorbate; CAT—catalase; Chl Cu/Zn-SOD—chloroplast copper/zinc superoxide dismutase; Cyt Cu/Zn-SOD—cytoplasmic copper/zinc superoxide dismutase; DHAR—dehydroascorbate reductase; Fe-SOD—iron superoxide dismutase; GPX— guaiacol peroxidase; GR—glutathione reductase; GSH— reduced glutathione; GSH-Px—glutathione peroxidase; H2O2—hydrogen peroxide; MDA—malondialdehyde; \({\text{O}}_{2}^{{\centerdot - }}\)—superoxide anion; PEG—polyethylene glycol; RWC—relative water content; SOD—superoxide dismutase; VA—vanillic acid.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y.Q., Sun, L., Wang, X.J. et al. Vanillic Acid Mitigates Dehydration Stress Responses in Blueberry Plants. Russ J Plant Physiol 66, 806–817 (2019). https://doi.org/10.1134/S1021443719050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050029

Keywords:

Navigation