Eco-physiological Responses of Artificial Night Light Pollution in Plants


Early in the 20th century, disparate human developmental processes culminate excess artificial light during night time and distort the phenological, physiological and ecological responses, which are sustained in the plants, animals and microorganism from millions of years. Earlier studies regarding artificial light (AL) during the night predominantly covered the drastic effects on animal systems. Although, drastic effects of AL during night time are enormous; therefore, the present topic is focused on the physiological and ecological consequences of artificial night light pollution (ANLP) on plant systems. In these consequences, most of the plant processes under ANLP are affected intensely and cause compelling changes in plant life cycle from germination to maturity. However, severe effects were observed in the case of pollination, photoreceptor signalling, flowering and microhabitats of plants. Along with drastic effects on ecology and environments, its relevance to human developmental processes cannot be avoided. Therefore, we need to equipoise between sustainable environment and steadily human development processes. Further, selection of plant/crop species, which are more responsive to ANLP, can minimize the ecological consequences of night light pollution. Likewise, changing artificial nightscape with the implication of new LEDs (Light Emitting Diodes) lightening policies like UJALA (, which are low cost, more durable, eco-friendly and less emitter of CO2, have potential to overcome the biodiversity threats, which arise due to old artificial lightening technology from decades. Hence, adopting new advance artificial lightening technology and understanding its impact on plant ecosystem will be a future challenge for plant biologist.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    Gaston, K.J., Bennie, J., Davies, T.W., and Hopkins, J., The ecological impacts of night time light pollution: a mechanistic appraisal, Biol. Rev., 2013, vol. 88, pp. 912–927.

    Article  PubMed  Google Scholar 

  2. 2

    Argüello-Astorga, G. and Herrera-Estrella, L., Evolution of light-regulated plant promoters, Annu. Rev. Plant Biol., 1998, vol. 1, pp. 525–555.

  3. 3

    Nozue, K. and Maloof, J.N., Diurnal regulation of plant growth, Plant Cell Environ., 2006, vol. 29, pp. 396–408.

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Möglich, A., Yang, X., Ayers, R.A., and Moffat, K., Structure and function of plant photoreceptors, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 21–47.

  5. 5

    Neff, M.M., Fankhauser, C., and Chory, J., Light: an indicator of time and place, Genes Dev., 2000, vol. 1, pp. 257–271.

    Google Scholar 

  6. 6

    Xu, D.Q., Gao, W., and Ruan, J., Effects of light quality on plant growth and development, Plant Physiol. J., 2015, vol. 8, pp. 1217–1234.

    Google Scholar 

  7. 7

    McClung, C.R., Plant circadian rhythms, Plant Cell, 2006, vol. 18, pp. 792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Verheijen, F.J., Photopollution: artificial light optic spatial control systems fail to cope with. Incidents, causation, remedies, Exp. Biol., 1984, vol. 44, pp 1–18.

    Google Scholar 

  9. 9

    Cinzano, P., Falchi, F., and Elvidge, C.D., The first world atlas of the artificial night sky brightness, Mon. Not. R. Astron. Soc., 2001, vol. 328, pp. 689–707.

    Article  Google Scholar 

  10. 10

    Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C.C., Elvidge, C.D., Baugh, K., Portnov, B.A., Rybni-kova, N.A., and Furgoni, R., The new world atlas of artificial night sky brightness, Sci. Adv., 2016, vol. 2: e1600377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Gaston, K.J., Gaston, S., Bennie, J., and Hopkins, J., Benefits and costs of artificial night time lighting of the environment, Environ. Rev., 2014, vol. 23, pp. 14–23.

    Article  Google Scholar 

  12. 12

    Bennie, J., Davies, T.W., Cruse, D., Inger, R., and Gaston, K.J., Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem, Phil. Trans. R. Soc. B, 2015, vol. 370: 20140131.

    Article  PubMed  Google Scholar 

  13. 13

    Holker, F., Wolter, C., Perkin, E.K., and Tockner, K., Light pollution as a biodiversity threat, Trends Ecol. Evol., 2010, vol. 25, pp. 681–682.

    Article  PubMed  Google Scholar 

  14. 14

    Tikka, P.M., Högmander, H., and Koski, P.S., Road and railway verges serve as dispersal corridors for grassland plants, Landscape Ecol., 2001, vol. 16, pp. 659–666.

    Article  Google Scholar 

  15. 15

    Cousins, S.A., Plant species richness in midfield islets and road verges—the effect of landscape fragmentation, Biol. Conserv., 2006, vol. 127, pp. 500–509.

    Article  Google Scholar 

  16. 16

    Goddard, M.A., Dougill, A.J., and Benton, T.G., Scaling up from gardens: biodiversity conservation in urban environments, Trends Ecol. Evol., 2010, vol. 25, pp. 90–98.

    Article  PubMed  Google Scholar 

  17. 17

    Angold, P.G., Sadler, J.P., Hill, M.O., Pullin, A., Rushton, S., Austin, K., Small, E., Wood, B., Wadsworth, R., Sanderson, R., and Thompson, K., Biodiversity in urban habitat patches, Sci. Total Environ., 2006, vol. 360, pp. 196–204.

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Elvidge, C.D., Hsu, F.C., Baugh, K.E., and Ghosh, T., National trends in satellite-observed lighting 1992–2012, in Global Urban Monitoring and Assessment through Earth Observation, 2014, pp. 97–118.

  19. 19

    Trombulak, S.C. and Frissell, C.A., Review of ecological effects of roads on terrestrial and aquatic communities, Conserv. Biol., 2000, vol. 14, pp. 18–30.

    Article  Google Scholar 

  20. 20

    Hölker, F., Wurzbacher, C., Weißenborn, C., Monaghan, M.T., Holzhauer, S.I., and Premke, K., Microbial diversity and community respiration in freshwater sediments influenced by artificial light at night, Phil. Trans. R. Soc. B, 2015, vol. 370: 20140130.

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Kyba, C.C., Tong, K.P., Bennie, J., Birriel, I., Birriel, J.J., Cool, A., Danielsen, A., Davies, T.W., den Outer, P.N., Edwards, W., Ehlert, R., Falchi, F., Fischer, J., Giacomelli, A., Giubbilini, F., et al., Worldwide variations in artificial skyglow, Sci. Rep., 2015, vol. 5: 8409.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bennie, J., Davies, T.W., Cruse, D., and Gaston, K.J., Ecological effects of artificial light at night on wild plants, J. Ecol., 2016, vol. 104, pp. 611–620.

    Article  Google Scholar 

  23. 23

    Longcore, T. and Rich, C., Ecological light pollution, Front. Ecol. Environ., 2004, vol. 2, pp. 191–198.

    Article  Google Scholar 

  24. 24

    Macgregor, C.J., Pocock, M.J., Fox, R., and Evans, D.M., Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review, Ecol. Entomol., 2015, vol. 3, pp. 187–198.

    Article  Google Scholar 

  25. 25

    Raap, T., Pinxten, R., and Eens, M., Light pollution disrupts sleep in free-living animals, Sci. Rep., 2015, vol. 5: 13557.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    LeTallec, T., Théry, M., and Perret, M., Effects of light pollution on seasonal estrus and daily rhythms in a nocturnal primate, J. Mammal., 2015, vol. 96, pp. 438–445.

    Article  Google Scholar 

  27. 27

    Luarte, T., Bonta, C.C., Silva-Rodriguez, E.A., Q-uijón, P.A., Mirand, C., Farias, A.A., and Duarte, C., Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate, En-viron. Pollut., 2016, vol. 218, pp. 1147–1153.

    Article  CAS  Google Scholar 

  28. 28

    Firebaugh, A. and Haynes, K.J., Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal, Oecologia, 2016, vol. 182, pp. 1203–1211.

    Article  PubMed  Google Scholar 

  29. 29

    Holker, F., Moss, T., Griefahn, B., Kloas, W., Voigt, C.C., Henckel, D., Hanel, A., Kappeler, P.M., Volker, S., Schwope, A., Franke, S., Uhrlandt, D., Fischer, J., Klenke, R., Wolter, C., et al., The dark side of light: a trans disciplinary research agenda for light pollution policy, Ecol. Soc., 2010, vol. 15: 13.

    Article  Google Scholar 

  30. 30

    Gaston, K.J., Visser, M.E., and Hölker, F., The biological impacts of artificial light at night: the research challenge, Phil. Trans. R. Soc. B, 2015, vol. 370: 2014013.

    Article  Google Scholar 

  31. 31

    Dominonin, D.M., Borniger, J.C., and Nelson, R.J., Light at night, clocks and health: from humans to wild organisms, Biol. Lett., 2016, vol. 12: 20160015.

    Article  CAS  Google Scholar 

  32. 32

    Light's Labour’s Lost: Policies for Energy-Efficient Lighting, Paris: International Energy Agency, 2006.

  33. 33

    Millar, A.J., The intracellular dynamics of circadian clocks reach for the light of ecology and evolution, Annu. Rev. Plant Biol., 2016, vol. 67, pp. 595–618.

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Von Arnim, A. and Deng, X.W., Light control of seedling development, Annu. Rev. Plant Biol., 1996, vol. 1, pp. 215–243.

    Article  Google Scholar 

  35. 35

    Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., and Lepiniec, L., Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis, Plant J., 2008, vol. 4, pp. 608–620.

    Article  CAS  Google Scholar 

  36. 36

    Murata, N., Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum, Biochim. Biophys. Acta (BBA)—Bioenergetics, 1969, vol. 172, pp. 242–251.

    Article  CAS  Google Scholar 

  37. 37

    Minagawa, J. and Tokutsu, R., Dynamic regulation of photosynthesis in Chlamydomonas reinhardtii, Plant J., 2015, vol. 82, pp. 413–428.

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Pierik, R. and de Wit, M., Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues, J. Exp. Bot., 2014, vol. 65, pp. 2815–2824.

    Article  PubMed  Google Scholar 

  39. 39

    Wijnen, H. and Young, M.W., Interplay of circadian clocks and metabolic rhythms, Annu. Rev. Genet., 2006, vol. 40, pp. 409–448.

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Bass, J., Circadian mechanisms in bioenergetics and cell metabolism, in A Time for Metabolism and Hormones, Sassone-Corsi, P. and Christen, Y., Eds., Springer Int. Publ., 2016, pp. 25–32.

    Google Scholar 

  41. 41

    Fan, X.X., Xu, Z.G., Liu, X.Y., Tang, C.M., Wang, L.W., and Han, X.L., Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light, Sci. Hort., 2013, vol. 153, pp. 50–55.

    Article  Google Scholar 

  42. 42

    Walker, T.S., Bais, H.P., Grotewold, E., and Vivanco, J.M., Root exudation and rhizosphere biology, Plant Physiol., 2003, vol. 132, pp. 44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Augustynowicz, J. and Gabrys, H., Chloroplast movements in fern leaves: correlation of movement dynamics and environmental flexibility of the species, Plant Cell Environ., 1999, vol. 22, pp. 1239–1248.

    Article  Google Scholar 

  44. 44

    Shimazaki, K.I., Doi, M., Assmann, S.M., and Kinoshita, T., Light regulation of stomatal movement, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 219–247.

    Article  CAS  PubMed  Google Scholar 

  45. 45

    Cao, L., Liu, B., Li, J., Yu, N., Zou, X., and Chen, L., Light- and temperature-regulated BjAPY2 may have a role in stem expansion of Brassica juncea, Funct. Integr. Genomics, 2015, vol. 6, pp. 753–762.

    Article  CAS  Google Scholar 

  46. 46

    Bidwell, R.G.S., Plant Physiology, London: Macmillan, 1979.

    Google Scholar 

  47. 47

    Cheung, C.M., Poolman, M.G., Fell, D.A., Ratcliffe, R.G., and Sweetlove, L.J., A diel flux balance model captures interactions between light and dark metabolism during day–night cycles in C3 and Crassulacean acid metabolism leaves, Plant Physiol., 2014, vol. 165, pp. 917–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Road Lighting, Part 2: Performance. Requirements, London: British Standards Inst., 2003.

  49. 49

    Dick, R., Scotobiology, in Special Report of the Journal of the Royal Astronomical Society of Canada, Environmental Impact of Light Pollution and its Abatement, 2012, pp. 7–10.

  50. 50

    Matzke, E.B., The effect of street lights in delaying leaf-fall in certain trees, Am. J. Bot., 1936, vol. 23, pp. 446–452.

    Article  Google Scholar 

  51. 51

    Cathey, H.M. and Campbell, L.E., Security lighting and its impact on the landscape, J. Arboric., 1975, vol. 1, pp. 181–187.

    Google Scholar 

  52. 52

    Velez-Ramirez, A.I., Heuvelink, E., van Ieperen, W., Vreugdenhil, D., and Millenaar, F.F., Continuous light as a way to increase greenhouse tomato production: expected challenges, Acta Hortic.: VII Int. Symp. on Light in Horticultural Systems, 2012, vol. 956, pp. 51–57.

  53. 53

    Haque, M.S., Kjaer, K.H., Rosenqvist, E., and Ottosen, C.O., Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species, Front. Plant Sci., 2015, vol. 6: 522.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Wanlai, Z., Wenke, L., and Qichang, Y., Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes, J. Plant Nutr., 2013, vol. 36, pp. 481–490.

    Article  CAS  Google Scholar 

  55. 55

    Aihara, K., Naramoto, S., Hara, M., and Mizoguchi, T., Increase in vascular pattern complexity caused by mutations in LHY and CCA1 in Arabidopsis thaliana under continuous light, Plant Biotechnol., 2014, vol. 31, pp. 43–47.

    Article  CAS  Google Scholar 

  56. 56

    Dorais, M., Demers, D.A., Papadopoulos, A.P., and van Ieperen, W., Greenhouse tomato fruit cuticle cracking, Hortic. Rev., 2004, vol. 3, pp. 163–184.

    Google Scholar 

  57. 57

    Dorais, M. and Gosselin, A., Physiological response of greenhouse vegetable crops to supplemental lighting, Proc. IV Int. ISHS Symp. on Artificial Lighting, 2000, vol. 580, pp. 59–67.

  58. 58

    Borthwick, H.A., Hendricks, S.B., Parker, M.W., Toole, E.H., and Toole, V.K., A reversible photoreaction controlling seed germination, Proc. Natl. Acad. Sci. USA, 1952, vol. 38, pp. 662–666.

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Sheerin, D.J., Menon, C., Zur Oven-Krockhaus, S., Enderle, B., Zhu, L., Johnen, P., Schleifenbaum, F., Stierhof, Y.D., Huq, E., and Hiltbrunner, A., Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex, Plant Cell, 2015, vol. 1, pp. 189–201.

    Article  CAS  Google Scholar 

  60. 60

    Bandana, B., Bhawna, P., Rajesh, K.S., Mahesh, K., and Sananda, M., Phytochrome: physiology, molecular aspects and sustainable crop production, in Emerging Trends of Plant Physiology for Sustainable Crop Production, Abbas, Z., Kumar Tiwari, A., and Kumar, P., Eds., Apple Acad. Press, 2017, Ch. 2.

    Google Scholar 

  61. 61

    Parker, M.W., Hendricks, S.B., Borthwick, H.A., and Jenner, C.E., Photoperiodic responses of plants and animals, Nature, 1952, vol. 169, pp. 242–243.

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Hisamatsu, T., Sumimoto, K., and Shimizu, H., End-of-day far-red treatment enhances responsiveness to gibberellins and promotes stem extension in chrysanthemum, J. Hortic. Sci. Biotechnol., 2008, vol. 83, pp. 695–700.

    Article  CAS  Google Scholar 

  63. 63

    Shin, J.H., Jung, H.H., and Kim, K.S., Night interruption using light emitting diodes (LEDs) promotes flowering of Cyclamen persicum in winter cultivation, Hortic. Environ. Biotechnol., 2010, vol. 5, pp. 391–395.

    Google Scholar 

  64. 64

    Whitman, C.M., Heins, R.D., Cameron, A.C., and Carlson, W.H., Lamp type and irradiance level for daylength extensions influence flowering of Campanula carpatica Blue Clips’, Coreopsis grandiflora Early Sunrise’, and Coreopsis verticillata Moonbeam’, J. Am. Soc. Hort. Sci., 1998, vol. 123, pp. 802–807.

    Article  Google Scholar 

  65. 65

    Lin, C., Blue light receptors and signal transduction, Plant Cell, 2002, vol. 14, pp. 207–225.

    Article  CAS  Google Scholar 

  66. 66

    Ahmad, M., Jarillo, J.A., Smirnova, O., and Cashmore, A.R., Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism, Nature, 1998, vol. 6677, pp. 720–723.

    Article  CAS  Google Scholar 

  67. 67

    Ahmad, M., Galland, P., Ritz, T., Wiltschko, R., and Wiltschko, W., Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana, Planta, 2007, vol. 225, pp. 615–624.

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Gautam, P., Terfa, M.T., Olsen, J.E., and Torre, S., Red and blue light effects on morphology and flowering of Petunia × hybrida, Sci. Hort., 2015, vol. 184, pp. 171–178.

    Article  Google Scholar 

  69. 69

    Kjaer, K.H. and Ottosen, C.O., Growth of chrysanthemum in response to supplemental light provided by irregular light breaks during the night, J. Am. Soc. Hort. Sci., 2011, vol. 136, pp. 3–9.

    Article  CAS  Google Scholar 

  70. 70

    Vollsnes, A.V., Eriksen, A.B., Otterholt, E., Kvaal, K., Oxaal, U., and Futsaether, C.M., Visible foliar injury and infrared imaging show that daylength affects short-term recovery after ozone stress in Trifolium- subterraneum, J. Exp. Bot., 2009, vol. 60, pp. 3677–3686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Queval, G., Issakidis-Bourguet, E., Hoeberichts, F.A., Vandorpe, M., Gakiere, B., Vanacker, H., Miginiac-Maslow, M., van Breusegem, F., and Noctor, G., Conditional oxidative stress responses in the Arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and define photoperiod as a crucial factor in the regulation of H2O2-induced cell death, Plant J., 2007, vol. 52, pp. 640–657.

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Gipson, J.R. and Joham, H.E., Influence of night temperature on growth and development of cotton (Gossypium hirsutum L.). I. Fruiting and boll development, Agron. J., 1968, vol. 60, pp. 292–295.

    Article  Google Scholar 

  73. 73

    Peng, S., Huang, J., Sheehy, J.E., Laza, R.C., Visperas, R.M., Zhong, X., Centeno, G.S., Khush, G.S., and Cassman, K.G., Rice yields decline with higher night temperature from global warming, Proc. Natl. Acad. Sci. USA, 2004, vol. 101, pp. 9971–9975.

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Raven, J.A. and Cockell, C.S., Influence on photosynthesis of starlight, moonlight, planet light and light pollution (reflections on photosynthetically active radiation in the universe), Astrobiology, 2006, vol. 6, pp. 668–676.

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Kim, Y.J., Yu, D.J., Rho, H., Runkle, E.S., Lee, H.J., and Kim, K.S., Photosynthetic changes in Cymbidium orchids grown under different intensities of night interruption lighting, Sci. Hort., 2015, vol. 186, pp. 124–128.

    Article  CAS  Google Scholar 

  76. 76

    Kim, Y.J., Lee, H.J., and Kim, K.S., Carbohydrate changes in Cymbidium 'Red Fire’ in response to night interruption, Sci. Hort., 2013, vol. 162, pp. 82–89.

    Article  CAS  Google Scholar 

  77. 77

    Chen, C.L., Su, Y.H., Liu, C.J., and Lee, Y.C., Effect of night illumination on growth and yield of soybean, J. Taiwan Agric. Res., 2009, vol. 58, pp. 146–154.

    CAS  Google Scholar 

  78. 78

    Chaney, W.R., Does night lighting harm trees? For. Nat. Res., 2002, vol. 17, pp. 1–4.

    Google Scholar 

  79. 79

    Moore, J.K. and Abbott, M.R., Phytoplankton chlorophyll distributions and primary production in the Southern Ocean, J. Geophys. Res., 2000, vol. 105, pp. 28709–28772.

    Article  CAS  Google Scholar 

  80. 80

    Oke, T.R., City size and the urban heat island, Atmos. Environ., 1973, vol. 8, pp. 769–779.

    Article  Google Scholar 

  81. 81

    Fox, R., The decline of moths in Great Britain: a review of possible causes, Insect Conserv. Diverssity, 2012, vol. 6.

  82. 82

    Effects of Variations in Pollinator Populations on Pollination Services, Washington, DC: The National Academies Press, 2007, part 4.

  83. 83

    Augspurger, C.K., Phenology, flowering synchrony, and fruit set of six neotropical shrubs, Biotropica, 1983, vol. 15, pp. 257–267.

    Article  Google Scholar 

  84. 84

    Anderson, J.T., Inouye, D.W., McKinney, A.M., Colautti, R.I., and Mitchell-Olds, T., Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change, Proc. R. Soc. Lond. B: Biol. Sci., 2012, vol. 279, pp. 3843–3852.

    Article  Google Scholar 

  85. 85

    Blanchard, M.G. and Runkle, E.S., Intermittent light from a rotating high-pressure sodium lamp promotes flowering of long-day plants, Hort. Sci., 2010, vol. 45, pp. 236–241.

    Article  Google Scholar 

  86. 86

    Craig, D.S. and Runkle, E.S., An intermediate phytochrome photoequilibria from night-interruption lighting optimally promotes flowering of several long-day plants, Environ. Exp. Bot., 2016, vol. 121, pp. 132–138.

    Article  CAS  Google Scholar 

  87. 87

    Carr, M.E., Friedrichs, M.A., Schmeltz, M., Aita, M.N., Antoine, D., Arrigo, K.R., Asanuma, I., Aumont, O., Barber, R., Behrenfeld, M., Bidigare, R., Buitenhuis, E.T., Campbell, J., Ciotti, A., Dierssen, H., et al., A comparison of global estimates of marine primary production from ocean color, in Deep Sea Research, Part II: Topical Studies in Oceanography, 2006, vol. 53, pp. 741–770.

    Article  Google Scholar 

  88. 88

    Fonken, L.K. and Nelson, R.J., Illuminating the deleterious effects of light at night, F1000 Med. Rep., 2011, vol. 3: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89

    Halaj, J. and Wise, D.H., Terrestrial trophic cascades: how much do they trickle? Am. Nat., 2001, vol. 157, pp. 262–281.

    Article  CAS  PubMed  Google Scholar 

  90. 90

    Frank, K.D., Effects of artificial night lighting on moths, in Ecological Consequences of Artificial Night Lighting, Washington: Island Press, 2006, pp. 305–344.

    Google Scholar 

  91. 91

    Martinell, M.C., Dötterl, S., Blanché, C., Rovira, A., Massó, S., and Bosch, M., Nocturnal pollination of the endemic Silene sennesii (Caryophyllaceae): an endangered mutualism? Plant Ecol. Evol., 2010, vol. 143, pp. 203–208.

    Article  Google Scholar 

  92. 92

    Mohammed, A.R. and Tarpley, L., Impact of high night time temperature on respiration, membrane stability, antioxidant capacity, and yield of rice plants, Crop Sci., 2009, vol. 49, pp. 313–322.

    Article  Google Scholar 

  93. 93

    Roberts, R.H. and Struckmeyer, B.E., Further studies of the effects of temperature and other environmental factors upon the photoperiodic response of plants, J. Agric. Res., 1939, vol. 59, pp. 699–709.

    Google Scholar 

  94. 94

    Mori, K., Sugaya, S., and Gemma, H., Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition, Sci. Hort., 2005, vol. 105, pp. 319–330.

    Article  CAS  Google Scholar 

  95. 95

    Hairston, N.G., Ellner, S.P., Geber, M.A., Yoshida, T., and Fox, J.A., Rapid evolution and the convergence of ecological and evolutionary time, Ecol. Lett., 2005, vol. 8, pp. 1114–1127.

    Article  Google Scholar 

  96. 96

    Jones, T.M., Durrant, J., Michaelides, E.B., and Green, M.P., Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness, Phil. Trans. R. Soc. B, 2015, vol. 370: 20140122.

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Design Manual for Roads and Bridges, London, 2007, vol. 8.

  98. 98

    International Dark-Sky Association, Dark Sky Park Program Criteria, Tucson, 2013. http://www.darksky. org/idsp/

  99. 99

    Work, H.P. and Flowers, H.P.M., Does the Moon Affect Plants? Part 2: Moonlight and Biorhythms, 2009.

  100. 100

    Olle, M. and Viršile, A., The effects of light-emitting diode lighting on greenhouse plant growth and quality, Agric. Food Sci., 2013, vol. 22, pp. 223–234.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to R. K. Singhal.

Additional information

The article is published in the original.

Abbreviations: ANLP—artificial night light pollution; LDPs—long day plants; LEDs—light emitting diodes; NI—night interruption; VPSD—vapour pressure saturation deficit; SDPs—short day plants.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singhal, R.K., Kumar, M. & Bose, B. Eco-physiological Responses of Artificial Night Light Pollution in Plants. Russ J Plant Physiol 66, 190–202 (2019).

Download citation


  • plant systems
  • light
  • artificial night light pollution
  • diurnal cycles
  • photoreceptors
  • microenvironment (microhabitat)
  • photoperiodism
  • phytochrome