Skip to main content
Log in

Comparison of L-Histidine Effects on Nickel Translocation into the Shoots of Different Species of the Genus Alyssum

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The work dealt with the influence of free L-histidine on nickel (Ni) translocation into the shoots of the hyperaccumulator plants Alyssum murale, A. fallacinum, A. corsicum, A. tenium, A. lesbiacum, A. bertolonii, A. pintodasilvae, and A. obovatum and of the closely related non-hyperaccumulator Aurinia saxatilis (formerly Alyssum saxatile). The Ni concentration in the xylem sap was determined by graphite furnace or flame atomic absorption spectrophotometry. If plants were not treated with L-histidine or L-alanine, the highest Ni concentration was found in the xylem sap of A. murale and A. corsicum. When the plants were pretreated with L‑histidine, the Ni loading into the xylem vessels increased in only two hyperaccumulator species, A. pintodasilvae and A. obovatum, and in the non-hyperaccumulator A. saxatilis. The plant pretreatment with L-alanine did not increase the Ni level in the xylem sap. This indicates that the stimulation of Ni xylem loading is histidine-specific and not characteristic of any amino acid. Therefore, the role of histidine in the selective nickel accumulation in the shoots may considerably differ even in closely related plant species of one genus. This may presumably be accounted for by both different contents of endogenous histidine in the roots and specific patterns of the metal transport and distribution in different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

REFERENCES

  1. Brooks, R.R., Lee, J., Reeves, R.D., and Jaffré, T., Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants, J. Geochem. Explor., 1977, vol. 7, pp. 49–57.

    Article  CAS  Google Scholar 

  2. Reeves, R.D. and Baker, A.J.M., Metal-accumulating plants, in Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment, Raskin, I. and Ensley, B.D., Eds., New York: John Wiley and Sons, 2000, pp. 193–229.

    Google Scholar 

  3. Verbruggen, N., Hermans, C., and Schat, H., Molecular mechanisms of metal hyperaccumulation in plants, New Phytol., 2009, vol. 181, pp. 759–776.

    Article  CAS  PubMed  Google Scholar 

  4. Krämer, U., Metal hyperaccumulation in plants, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 517–534.

  5. Koch, M. and Al-Shehbaz, I.A., Phylogeny of Brassica and wild relatives, in Biology and Breeding of Crucifers, Gupta, S.K., Ed., Boca Raton: Taylor and Francis Group, 2009, pp. 1–19.

    Google Scholar 

  6. Cecchi, L., Gabbrielli, R., Arnetoli, M., Gonnelli, C., Hasko, A., and Selvi, F., Evolutionary lineages of nickel hyperaccumulation and systematics in European Alysseae (Brassicaceae): evidence from nrDNA sequence data, Ann. Bot., 2010, vol. 106, pp. 751–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seregin, I.V. and Kozhevnikova, A.D., Physiological role of nickel and its toxic effects on higher plants, Russ. J. Plant Physiol., 2006, vol. 53, pp. 257–277.

    Article  CAS  Google Scholar 

  8. Leitenmaier, B. and Küpper, H., Compartmentation and complexation of metals in hyperaccumulator plants, Front. Plant Sci., 2013, vol. 4, pp. 1–13.

    Article  Google Scholar 

  9. Richau, K.H., Kozhevnikova, A.D., Seregin, I.V., Vooijs, R., Koevoets, P.L.M., Smith, J.A.C., Ivanov, V.B., and Schat, H., Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator, Thlaspi caerulescens, New Phytol., 2009, vol. 183, pp. 106–116.

    Article  CAS  PubMed  Google Scholar 

  10. Kozhevnikova, A.D., Seregin, I.V., Erlikh, N.T., Shevyreva, T.A., Andreev, I.M., Verweij, R., and Schat, H., Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens, New Phytol., 2014, vol. 203, pp. 508–519.

    Article  CAS  PubMed  Google Scholar 

  11. Kozhevnikova, A.D., Seregin, I.V., Verweij, R., and Schat, H., Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens, Plant Signal. Behav., 2014, vol. 9: e29580. http://www.tandfonline.com/doi/full/10.4161/psb.29580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kerkeb, L. and Krämer, U., The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea, Plant Physiol., 2003, vol. 131, pp. 716–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krämer, U., Cotter-Howells, J.D., Charnock, J.M., Baker, A.J.M., and Smith, A.C., Free histidine as a metal chelator in plants that accumulate nickel, Nature, 1996, vol. 379, pp. 635–638.

  14. Assunção, A.G.L., Bookum, W.M., Nelissen, H.J.M., Vooijs, R., Schat, H., and Ernst, W.H.O., Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types, New Phytol., 2003, vol. 159, pp. 411–419.

  15. Lasat, M.M., Baker, A.J.M., and Kochian, L.V., Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens, Plant Physiol., 1998, vol. 118, pp. 875–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ingle, R.A., Mugford, S.T., Rees, J.D., Campbell, M.M., and Smith, J.A.C., Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants, Plant Cell, 2005, vol. 17, pp. 2089–2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seregin, I.V. and Kozhevnikova, A.D., Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium, Russ. J. Plant Physiol., 2008, vol. 55, pp. 1–22.

    Article  CAS  Google Scholar 

  18. Baklanov, I.A., Seregin, I.V., and Ivanov, V.B., Histochemical analysis of nickel distribution in the hyperaccumulator and excluder in the genus Alyssum L., Dokl. Biol. Sci., 2009, vol. 429, pp. 548–550.

    Article  CAS  PubMed  Google Scholar 

  19. Haydon, M.J. and Cobbett, C.S., Transporters of ligands for essential metal ions in plants, New Phytol., 2007, vol. 174, pp. 499–506.

    Article  CAS  PubMed  Google Scholar 

  20. Hussain, D., Haydon, M.J., Wang, Y., Wong, E., Sherson, S.M., Young, J., Camakaris, J., Harper, J.F., and Cobbett, C.S., P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis, Plant Cell, 2004, vol. 16, pp. 1327–1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hanikenne, M., Talke, I.N., Haydon, M.J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., and Krämer, U., Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4, Nature, 2008, vol. 453, pp. 391–395.

    Article  CAS  PubMed  Google Scholar 

  22. Bernard, C., Roosens, N., Czernic, P., Lebrun, M., and Verbruggen, N., A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens, FEBS Lett., 2004, vol. 569, pp. 140–148.

    Article  CAS  PubMed  Google Scholar 

  23. Salt, D.E., Prince, R.C., Baker, A.J., Raskin, I., and Pickering, I.J., Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy, Environ. Sci. Technol., 1999, vol. 33, pp. 713–717.

    Article  CAS  Google Scholar 

  24. Monsant, A.C., Kappen, P., Wang, Y., Pigram, P.J., Baker, A.J., and Tang, C., In vivo speciation of zinc in Noccaea caerulescens in response to nitrogen form and zinc exposure, Plant Soil, 2011, vol. 348, pp. 167–183.

    Article  CAS  Google Scholar 

  25. Kersten, W.J., Brooks, R.R., Reeves, R.D., and Jaffre, T., Nature of nickel complexes in Psychotria douarrei and other nickel-accumulating plants, Phytochemistry, 1980, vol. 19, pp. 1963–1965.

    Article  CAS  Google Scholar 

  26. Vacchina, V., Mari, S., Czernic, P., Marquès, L., Pianelli, K., Schaumlöffel, D., Lebrun, M., and Łobiński, R., Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectroscopy and electrospray MS/MS assisted by cloning using yeast complementation, Anal. Chem., 2003, vol. 75, pp. 2740–2745.

    Article  CAS  PubMed  Google Scholar 

  27. Kim, S., Takahashi, M., Higuchi, K., Tsunoda, K., Nakanishi, H., Yoshimura, E., Mori, S., and Nishizawa, N.K., Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants, Plant Cell Physiol., 2005, vol. 46, pp. 1809–1818.

    Article  CAS  PubMed  Google Scholar 

  28. Sagner, S., Kneer, R., Wanner, G., Cosson, J.-P., Deus-Neumann, B., and Zenk, M.H., Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata, Phytochemistry, 1998, vol. 47, pp. 339–343.

    Article  CAS  PubMed  Google Scholar 

  29. Dawson, R.M.C., Elliott, D.C., Elliott, W.H., and Jones, K.M., Data for Biochemical Research, Oxford: Clarendon, 1986.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was partially supported by the Russian Foundation for Basic Research, project no. 15-04-02236, and by the LOCOMET International Scientific P-rogram. We are grateful to Prof. A.J.М. Baker (Melbourne, Australia) for kindly providing the seeds of the Alyssum murale, A. fallacinum, A. corsicum, A. tenium, A. lesbiacum, A. bertolonii, A. pintodasilvae, and Aurinia saxatilis; to Dr. M.N. Kataeva (Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg) for kindly providing the seeds of A. obovatum; and to Prof. V.B. Ivanov (Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow) for the critical discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Seregin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Aver’yanov

The authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seregin, I.V., Kozhevnikova, A.D. & Schat, H. Comparison of L-Histidine Effects on Nickel Translocation into the Shoots of Different Species of the Genus Alyssum. Russ J Plant Physiol 66, 340–344 (2019). https://doi.org/10.1134/S1021443719020122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719020122

Keywords: