Russian Journal of Plant Physiology

, Volume 65, Issue 4, pp 563–569 | Cite as

Responses of Typha orientalis Roots to Pb2+ Stress

  • X. Y. XuEmail author
  • Y. Y. Hou
  • Y. K. Xu
  • Y. Ji
  • Y. G. Jin
Research Papers


To investigate phytoremediation potential of Typha orientalis Presl in removing Pb2+ from polluted water, relevant experiments were conducted to evaluate responses activated by Pb2+ (0.25–2 mM) in T. orientalis roots over a period of ten days. Pb contents in subcellular fractions decreased in the following order: cell wall > organelle > soluble fraction. Most of Pb was located in cell wall and membrane system. Contents of K and Ca declined in T. orientalis roots under Pb2+ stress, but an opposite effect was noted for some mineral elements (Mg, Cu, Zn, and Fe). H2O2 level increased in a concentration-dependent manner, which induced oxidative stress. However, significant reduction in levels of O 2 ·− and malondialdehyde (MDA) were observed in all Pb2+ treatment groups. Findings indicated toxicity of Pb2+ to T. orientalis in terms of inducing oxidative stress and causing imbalance in mineral elements. However, T. orientalis also resisted Pb2+-induced damage through isolation mechanism, which involves cell wall and membrane systems.


Typha orientalis Pb phytoremediation oxidative stress subcellular distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kalembasa, D. and Malinowska, E., Influence of sewage sludge fertilization on heavy metal content in biomass of silver grass during field experiment, Environ. Prot. Eng., 2009, vol. 35, pp. 149–155.Google Scholar
  2. 2.
    Qiao, X.Q., Zheng, Z.Z., Zhang, L.F., Wang, J.H., Shi, G.X., and Xu, X.Y., Lead tolerance mechanism in sterilized seedlings of Potamogeton crispus L.: subcellular distribution, polyamines and proline, Chemosphere, 2015, vol. 120, pp. 179–187.CrossRefPubMedGoogle Scholar
  3. 3.
    Jenssen, P.D., Maehlum, T., and Krogstad, T., Potential use of constructed wetlands for wastewater treatment in northern environments, Water Technol., 1993, vol. 28, pp. 149–157.CrossRefGoogle Scholar
  4. 4.
    Inoue, T.M. and Tsuchiya, T., Growth strategy of an emergent macrophyte, Typha orientalis Presl, in comparison with Typha latifolia L. and Typha angustifolia L., Limnology, 2006, vol. 7, pp. 171–174.CrossRefGoogle Scholar
  5. 5.
    Inoue, T. and Tsuchiya, T., Depth distribution of three Typha species, Typha orientalis Presl, Typha angustifolia L. and Typha latifolia L., in an artificial pond, Plant Spec. Biol., 2009, vol. 24, pp. 47–52.CrossRefGoogle Scholar
  6. 6.
    Hong, M.G. and Kim, J.G., Effects of initial density, nutrient, and water level regime on the seedling survival and growth of Typha orientalis Presl, J. Plant Biol., 2016, vol. 59, pp. 369–376.CrossRefGoogle Scholar
  7. 7.
    Li, Y.L., Liu, Y.G., Liu, J.L., Zeng, C.M., and Li, X., Effects of EDTA on lead uptake by Typha orientalis Presl: a new lead-accumulating species in southern China, Bull. Environ. Contam. Toxicol., 2008, vol. 81, pp. 36–41.CrossRefPubMedGoogle Scholar
  8. 8.
    Xu, Y.K., Xu, X.Y., Chi, Y., and Jin, Y.G., Physiological responses and ultrastructural changes of Typha orientalis Presl under Pb2+ stress, Acta Bot. Boreali.–Occident. Sin., 2015, vol. 35, pp. 2018–2025.Google Scholar
  9. 9.
    Liu, J., Duan, C.Q., Zhang, X.H., Zhu, Y.N., and Hu, C., Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz, Plant Soil, 2009, vol. 322, pp. 187–195.CrossRefGoogle Scholar
  10. 10.
    Qiao, X.Q., Shi, G.X., Chen, L., Tian, X.L., and Xu, X.Y., Lead-induced oxidative damage in steriled seedlings of Nymphoides peltatum, Environ. Sci. Pollut. Res., 2013, vol. 20, pp. 5047–5055.CrossRefGoogle Scholar
  11. 11.
    Xu, X.Y., Shi, G.X., Ding, C.X., Xu, Y., Zhao, J., Yang, H.Y., and Pan, Q.H., Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress, Plant Growth Regul., 2011, vol. 63, pp. 251–258.CrossRefGoogle Scholar
  12. 12.
    Yang, H.Y., Shi, G.X., Li, W.L., and Wu, W.L., Exogenous spermidine enhances Hydrocharis dubia cadmium tolerance, Russ. J. Plant Physiol., 2013, vol. 60, pp. 770–775.CrossRefGoogle Scholar
  13. 13.
    Zhang, J.J., Zhang, T.T., Lu, Q.Q., Cai, S.J., Chu, W.Y., Qiu, H., Xu, T., Li, F.F., and Xu, Q.S., Oxidative effects, nutrients and metabolic changes in aquatic macrophyte, Elodea nuttallii, following exposure to lanthanum, Ecotox. Environ. Safe., 2015, vol. 115, pp. 159–165.CrossRefGoogle Scholar
  14. 14.
    Yang, H.Y., Shi, G.X., Wang, H.X., and Xu, Q.S., Involvement of polyamines in adaptation of Potamogeton crispus L. to cadmium stress, Aquat. Toxicol., 2010, vol. 100, pp. 282–288.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu, X.Y., Shi, G.X., Wang, J., Zhang, L.L., and Kang, Y.N., Copper-induced oxidative stress in Alternanthera philoxeroides callus, Plant Cell Tissue Organ Cult., 2011, vol. 106, pp. 243–251.CrossRefGoogle Scholar
  16. 16.
    Dewez, D., Geoffroy, L., Vernet, G., and Popovic, R., Determination of photosynthetic and enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil in alga Scenedesmus obliquus, Aquat. Toxicol., 2005, vol. 74, pp. 150–159.CrossRefPubMedGoogle Scholar
  17. 17.
    Antosiewicz, D. and Wierzbicka, M., Localization of lead in Allium cepa L. cells by electron microscopy, J. Microsc., 1999, vol. 195, pp. 139–146.CrossRefPubMedGoogle Scholar
  18. 18.
    Krzeslowska, M., The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy, Acta Physiol. Plant., 2011, vol. 33, pp. 35–51.CrossRefGoogle Scholar
  19. 19.
    Wang, J., Zhang, L.L., Kang, Y.N., and Shi, G.X., Ultrastructural localization and effect of lead on mineral elements in allus of Alternanthera philoxeroides, Acta Hydrobiol. Sin., 2012, vol. 36, pp. 307–315.Google Scholar
  20. 20.
    Mishra, S., Srivastava, S., Tripathi, R.D., Kumar, R., Seth, C.S., and Gupta, D.K., Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation, Chemosphere, 2006, vol. 65, pp. 1027–1039.CrossRefPubMedGoogle Scholar
  21. 21.
    Sinha, S., Gupta, M., and Chandra, P., Bioaccumulation and biochemical effects of mercury in the plant Bacopa monnieri (L.), Environ. Toxicol. Water Qual., 1996, vol. 11, pp. 105–112.CrossRefGoogle Scholar
  22. 22.
    Gupta, M., Sinha, S., and Chandra, P., Copperinduced toxicity in aquatic macrophyte, Hydrilla verticillata: effect of pH, Ecotoxicology, 1996, vol. 5, pp. 23–33.CrossRefPubMedGoogle Scholar
  23. 23.
    Dhir, B., Sharmila, P., and Saradhi, P.P., Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline, Aquat. Toxicol., 2004, vol. 66, pp. 141–147.CrossRefPubMedGoogle Scholar
  24. 24.
    Gupta, M. and Chandra, P., Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis, Environ. Pollut., 1998, vol. 103, pp. 327–332.CrossRefGoogle Scholar
  25. 25.
    Ouzounidou, G. and Constantinidou, H.A., Changes in growth and physiology of tobacco and cotton under Ag exposure and recovery: are they of direct or indirect nature, Arch. Environ. Contam. Toxicol., 1999, vol. 37, pp. 480–487.CrossRefPubMedGoogle Scholar
  26. 26.
    Xu, Q.S., Hu, J.Z., Xie, K.B., Yang, H.Y., Du, K.H., and Shi, G.X., Accumulation and acute toxicity of silver in Potamogeton crispus L., J. Hazard. Mater., 2010, vol. 173, pp. 186–193.CrossRefPubMedGoogle Scholar
  27. 27.
    Guerinot, M.L., The ZIP family of metal transporters, Biochim. Biophys. Acta—Biomembranes, 2000, vol. 1465, pp. 190–198.CrossRefGoogle Scholar
  28. 28.
    Pittman, J.K., Managing the manganese: molecular mechanisms of manganese transport and homeostasis, New Phytol., 2005, vol. 167, pp. 733–742.CrossRefPubMedGoogle Scholar
  29. 29.
    Douchiche, O., Soret-Morvan, O., Chaïbi, W., Morvan, C., and Paynel, F., Characteristics of cadmium tolerance in 'Hermes' flax seedlings: contribution of cell walls, Chemosphere, 2010, vol. 81, pp. 1430–1436.CrossRefPubMedGoogle Scholar
  30. 30.
    Qiao, X.Q., Shi, G.X., Jia, R., Chen, L., Tian, X.L., and Xu, J., Physiological and biochemical responses induced by lead stress in Spirodela polyrhiza, Plant Growth Regul., 2012, vol. 67, pp. 217–225.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • X. Y. Xu
    • 1
    Email author
  • Y. Y. Hou
    • 1
  • Y. K. Xu
    • 1
  • Y. Ji
    • 1
  • Y. G. Jin
    • 1
  1. 1.Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina

Personalised recommendations