Skip to main content
Log in

Macromolecular Toxins Secreted by Botrytis cinerea Induce Programmed Cell Death in Arabidopsis Leaves

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Botrytis cinerea causes grey mold disease in crops and horticultural plants. It is suspected to kill plant cells via secreted toxins and to derive nutrients from dead or dying cells. However, whether macromolecular phytotoxins (MPs) secreted by B. cinerea induce necrosis or also trigger a programmed cell death (PCD) remains to be determined. We have previously partially characterized MPs secreted by B. cinerea. Here we isolated MPs from B. cinerea culture and applied them to leaf cells, assessing PCD over the following 120 h. Cell death was assessed by propidium iodide (PI) and 4′,6-diamidino-2-phenylindole (DAPI) staining. Catalase (CAT), peroxidase (POD) activity and the cytochrome c/a ratio were assessed by spectrophotometer. POD isomers were measured using the benzidine acetate method. In Arabidopsis thaliana (L.) Heynh. exposed to B. cinerea MPs, we observed chromatin condensation and marginalization, nuclear substance leakage and accumulation of autofluorescent materials in the cell wall. Furthermore, B. cinerea MPs induced release of cytochrome c from the mitochondria into the cytosol. Moreover, CAT and POD activity was upregulated and the POD isoenzyme pattern was altered. In conclusion, A. thaliana exposed to B. cinerea MPs exhibits multiple hallmarks of PCD, suggesting that B. cinerea induces PCD in host cells through secreted macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCD:

programmed cell death

MPs:

macromolecular phytotoxins

PI:

propidium iodide

DAPI:

4′,6-diamidino-2-phenylindole

CAT:

catalase

POD:

peroxidase

HR:

hypersensitive response

PDA:

potato dextrose agar

Cyt c/a :

cytochrome c and a

References

  1. Williamson, B., Tudzynski, B., Tudzynski, P., and van Kan, J.A., Botrytis cinerea: the cause of grey mould disease, Mol. Plant Pathol., 2007, vol. 8, pp. 561–580.

    Article  PubMed  CAS  Google Scholar 

  2. Govrin, E.M. and Levine, A., The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Curr. Biol., 2000, vol. 10, pp. 751–757.

    Article  PubMed  CAS  Google Scholar 

  3. Etalo, D.W., Stulemeijer, I.J., van Esse, H.P., de Vos, R.C., Bouwmeester, H.J., and Joosten, M.H., System-wide hypersensitive response-associated transcriptome and metabolome reprogramming in tomato, Plant Physiol., 2013, vol. 162, pp. 1599–1617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Schouten, A., Tenberge, K.B., Vermeer, J., Stewart, J., Wagemakers, L., Williamson, B., and van Kan, J.A., Functional analysis of an extracellular catalase of Botrytis cinerea, Mol. Plant Pathol., 2002, vol. 3, pp. 227–238.

    Article  PubMed  CAS  Google Scholar 

  5. Van Baarlen, P., Staats, M., and van Kan, J.A.L., Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica, Mol. Plant Pathol., 2004, vol. 5, pp. 559–574.

    Article  Google Scholar 

  6. Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J.M., Simon, A., and Viaud, M., Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen, FEMS Microbiol. Lett., 2007, vol. 277, pp. 1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Kunz, C., Vandelle, E., Rolland, S., Poinssot, B., Bruel, C., Cimerman, A., Zotti, C., Moreau, E., Vedel, R., Pugin, A., and Boccara, M., Characterization of a new, nonpathogenic mutant of Botrytis cinerea with impaired plant colonization capacity, New Phytol., 2006, vol. 170, pp. 537–550.

    Article  PubMed  CAS  Google Scholar 

  8. Staats, M., van Baarlen, P., Schouten, A., van Kan, J.A.L., and Bakker, F.T., Positive selection in phytotoxic protein-encoding genes of Botrytis species, Fungal Genet. Biol., 2007, vol. 44, pp. 52–63.

    Article  PubMed  CAS  Google Scholar 

  9. Rossi, F.R., Gárriz, A., Marina, M., Romero, F.M., Gonzalez, M.E., Collado, I.G., and Pieckenstain, F.L., The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling, Mol. Plant–Microbe Interact., 2011, vol. 24, pp. 888–896.

    Article  PubMed  CAS  Google Scholar 

  10. Hu, H.L., Dong, Q., Wu, J., Huo, D., Wang, Y.Y., and Yang, H.Y., Identification of damage on different plants caused by Botrytis cinerea and its macromolecular toxins, Plant Disease Pests, 2013, vol. 4, pp.16–19.

    Google Scholar 

  11. Yang, H.Y., Zhao, X.D., Wu, J., Hu, M., and Xia, S.L., The benefits of exogenous NO: enhancing Arabidopsis to resist Botrytis cinerea, Am. J. Plant Sci., 2011, vol. 2, pp. 511–519.

    Article  CAS  Google Scholar 

  12. Sarpeleh, A., Wallwork, H., Catcheside, D.E., Tate, M.E., and Able, A.J., Proteinaceous metabolites from Pyrenophora teres contribute to symptom development of barley net blotch, Phytopathology, 2007, vol. 97, pp. 907–915.

    Article  PubMed  CAS  Google Scholar 

  13. Hagborg, W.A.F., A device for injecting solutions and suspensions into thin leaves of plants, Can. J. Bot., 1970, vol. 48, pp. 1135–1136.

    Article  Google Scholar 

  14. Deng, X., Wang, W., and Wang, Z., A simple device of the injection solution into the plant thin blade, Plant Physiol. J., 1992, vol. 28, p.296.

    Google Scholar 

  15. Chandra, A., Saxena, R., Dubey, A., and Saxena, P., Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhance resistance in cowpea against Rhizoctonia solani, Acta Physiol. Plant., 2007, vol. 29, pp. 361–367.

    Article  CAS  Google Scholar 

  16. Kelly, B.M. and Wiskich, J.T., Respiration of mitochondria isolated from leaves and protoplasts of Avena sativa, Plant Physiol., 1988, vol. 87, pp. 705–710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Yao, N., Eisfelder, B.J., Marvin, J., and Greenberg, J.T., The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana, Plant J., 2004, vol. 40, pp. 596–610.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang, L., Oh, Y., Li, H., Baldwin, I.T., and Galis, I., Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae, Plant Physiol., 2012, vol. 160, pp. 1453–1467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Van Doorn, W.G., Classes of programmed cell death in plants, compared to those in animals, J. Exp. Bot., 2011, vol. 62, pp. 4749–4761.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, L., Jia, C., Liu, L., Zhang, Z., Li, C., and Wang, Q., The involvement of jasmonates and ethylene in Alternaria alternata f. sp. lycopersici toxin-induced tomato cell death, J. Exp. Bot., 2011, vol. 62, pp. 5405–5418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yao, N., Tada, Y., Park, P., Nakayashiki, H., Tosa, Y., and Mayama, S., Novel evidence for apoptotic cell response and differential signals in chromatin condensation and DNA cleavage in victorin-treated oats, Plant J., 2001, vol. 28, pp. 13–26.

    Article  PubMed  CAS  Google Scholar 

  22. Yao, N., Imai, S., Tada, Y., Nakayashiki, H., Tosa, Y., Park, P., and Mayama, S., Apoptotic cell death is a common response to pathogen attack in oats, Mol. Plant–Microbe Interact., 2002, vol. 15, pp. 1000–1007.

    Article  PubMed  CAS  Google Scholar 

  23. Soylu, S. and Soylu, E.M., Preliminary characterization of race-specific elicitors from Peronospora parasitica and their ability to elicit phenolic accumulation in Arabidopsis, Phytoparasitica, 2003, vol. 31, pp. 381–392.

    Article  CAS  Google Scholar 

  24. Mansfield, J.W. and Richardson, A., The ultrastructure of interactions between Botrytis species and broad bean leaves, Physiol. Plant Pathol., 1981, vol. 19, pp. 41–48.

    Article  Google Scholar 

  25. Chen, Q., Zhang, G.B., Shi, M., Zhang, Z.L., Yan, B., and Yang, H.Y., Identification of phytotoxicity and laccase properties of extracellular macromolecule substance from Botrytis cinerea, China Vegetables, 2015, vol. 7, pp. 29–33.

    Google Scholar 

  26. Oh, Y., Baldwin, I.T., and Galis, I., NaJAZh regulates a subset of defense responses against herbivores and spontaneous leaf necrosis in Nicotiana attenuata plants, Plant Physiol., 2012, vol. 159, pp. 769–788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Imberty, A., Goldberg, R., and Catesson, A.M., Isolation and characterization of Populus isoperoxidases involved in the last step of lignin formation, Planta, 1985, vol. 164, pp. 221–226.

    Article  PubMed  CAS  Google Scholar 

  28. Syros, T., Yupsanis, T., Zafiriadis, H., and Economou, A., Activity and isoforms of peroxidases, lignin and anatomy, during adventitious rooting in cuttings of Ebenus cretica L., J. Plant Physiol., 2004, vol. 161, pp. 69–77.

    Article  PubMed  CAS  Google Scholar 

  29. Lam, E., Kato, N., and Lawton, M., Programmed cell death, mitochondria and the plant hypersensitive response, Nature, 2001, vol. 411, pp. 848–853.

    PubMed  CAS  Google Scholar 

  30. Pattanayak, G.K., Venkataramani, S., Hortensteiner, S., Kunz, L., Christ, B., Moulin, M., Smith, A.G., Okamoto, Y., Tamiaki, H., Sugishima, M., and Greenberg, J.T., ACCELERATED CELL DEATH2 suppresses mitochondrial oxidative bursts and modulates cell death in Arabidopsis, Plant J., 2012, vol. 69, pp. 589–600.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Wang.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, D., Wu, J., Kong, Q. et al. Macromolecular Toxins Secreted by Botrytis cinerea Induce Programmed Cell Death in Arabidopsis Leaves. Russ J Plant Physiol 65, 579–587 (2018). https://doi.org/10.1134/S1021443718040131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718040131

Keywords

Navigation