Skip to main content
Log in

Phosphate Limitation Alters Medicago–Sinorhizobium Signaling: Flavonoid Synthesis and AHL Production

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The legume plant Medicago truncatula Gaertn. can establish a symbiotic interaction with Sinorhizobium meliloti. One of the most limiting factors for symbiosis is phosphate (P) deficiency. Therefore, legumes and their symbiotic partners, rhizobia, have developed mechanisms to adapt to P restriction. In the non-symbiotic state, plants would up-regulate flavonoid biosynthesis via increasing the expression of chalcone synthase (chs), catalyzing the first step of flavonoid synthesis. Simultaneously, bacterial quorum sensing (QS) pathway can regulate the expression of certain genes involved in symbiotic functions of bacteria in response to P availability as well as bacterial population. Since both flavonoids and QS signaling molecules (N-acyl homoserine lactones, AHL) play important roles in the rhizobia-legume symbiosis, we evaluated these processes in the symbiotic state under different P concentrations and bacterial populations. In this study, by using real-time PCR and HPLC, we showed the expression of pt1 (phosphate transporter 1) and chs as well as luteolin production increased, in a time dependent manner, in plants following P limitation. Nod gene inducing flavonoids can up-regulate the bacterial QS pathway which results in an increase in AHL production, possibly to enhance symbiotic behaviors of rhizobia. It has been estimated that there is a feedback loop from bacterial AHL to flavonoid production pathway in legume plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AHL:

N-acyl homoserine lactones

B and D:

Broughton and Dilworth

CFU:

colony forming unit

chs:

chalcone synthase

DAI:

days after inoculation

EGFP:

enhanced green fluorescent protein

F:

fluorescence

MOPS:

morpholineethansulfonic acid

OD:

optical density

pt1:

phosphate transporter 1

qRT-PCR:

quantitative real time-PCR

QS:

quorum sensing

TFA:

trifluroacetic acid

References

  1. Batstone, R.T., Dutton, E.M., Wang, D., Yang, M., and Frederickson, M.E., The evolution of symbiont preference traits in the model legume Medicago truncatula, New Phytol., 2017, vol. 213, pp. 1850–1861.

    Article  CAS  PubMed  Google Scholar 

  2. Tang, C., Hinsinger, P., Drevon, J.J., and Jaillard, B., Phosphorus deficiency impairs early nodule functioning and enhances proton release in roots of Medicago truncatula L., Ann. Bot., 2001, vol. 88, pp. 131–138.

    Article  CAS  Google Scholar 

  3. Millar, A.H., Whelan, J., Soole, K.L., and Day, D.A., Organization and regulation of mitochondrial respiration in plants, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 79–104.

    Article  CAS  PubMed  Google Scholar 

  4. Broeckx, T., Hulsmans, S., and Rolland, F., The plant energy sensor: evolutionary conservation and divergence of SnRK1 structure, regulation, and function, J. Exp. Bot., 2017, vol. 67, pp. 6215–6252.

    Google Scholar 

  5. McIntosh, M., Meyer, S., and Becker, A., Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability, Mol. Microbiol., 2009, vol. 75, pp. 1238–1256.

    Article  Google Scholar 

  6. Pakdaman, N., Mostajeran, A., and Hojati, Z., Phosphate concentration alters the effective bacterial quorum in the symbiosis of Medicago truncatulaSinorhizobium meliloti, Symbiosis, 2014, vol. 62, pp. 151–155.

    Article  CAS  Google Scholar 

  7. Gurich, N. and Gonzalez, J.E., Role of quorum sensing in Sinorhizobium melilotialfalfa symbiosis, J. Bacteriol., 2009, vol. 191, pp. 4372–4382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marketon, M.M., Groquist, M.R., Eberhard, A., and Gonzalez, J.E., Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones, J. Bacteriol., 2002, vol. 184, pp. 5686–5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Britstein, M., Devescovi, G., Handley, K.M., Malik, A., Haber, M., Saurav, K., Teta, R., Costantino, V., Burgsdorf, I., Gilbert, J.A., Sher, N., Venturi, V., and Steindler, L., A new N-acyl homocerine lactone synthase in an uncultured symbiont of the red sea sponge Theonella swinhoei, Appl. Environ. Microbiol., 2016, vol. 82, pp. 1274–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoang, H.H., Gurich, N., and Gonzalez, J.E., Regulation of motility by the ExpR/Sin quorum-sensing sys tem in Sinorhizobium meliloti, J. Bacteriol., 2008, vol. 190, pp. 861–871.

    Article  CAS  PubMed  Google Scholar 

  11. McIntosh, M., Krol, E., and Becker, A., Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti, J. Bacteriol., 2008, vol. 190, pp. 5308–5317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, D., Yang, S., Tang, F., and Zhu, H., Symbiosis specificity in the legume–rhizobial mutualism, Cell Microbiol., 2012, vol. 14, pp. 334–342.

    Article  PubMed  Google Scholar 

  13. Kawaharada, Y., James, E.K., Kelly, S., Sandal, N., and Stougaard, J., The Ethylene Responsive Factor Required for Nodulation 1 (ERN1) transcription factor is required for infection thread formation in Lotus japonicus, Mol. Plant–Microbe Interact., 2017, vol. 30, no. 3, pp. 194–204.

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, O., Zhang, C., Jia, Z., Huang, Y., Li, H., and Song, S., Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana, Front. Plant Sci., 2015, vol. 5:807.

    PubMed  PubMed Central  Google Scholar 

  15. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anolles, G., Rolfe, B.G., and Bauer, W.D., Extensive and specific responses of a eukaryote to bacterial quorum sensing signals, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 1444–1449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perez-Montano, F., Guasch-Vidal, B., Gonzalez-Barroso, S., Lopez-Baena, F.J., Cubo, T., Ollero, F.J., Gil-Serrano, A.M., Rodriguez-Carvajal, M.A., Bellogin, R.A., and Espuny, M.R., Nodulation-geneinducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia, Res. Microbiol., 2011, vol. 162, pp. 715–723.

    Article  CAS  PubMed  Google Scholar 

  17. Juszczuk, I.M., Wiktorowska, A., Malusa, E., and Rychter, M., Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.), Plant Soil, 2004, vol. 267, pp. 41–49.

    Article  CAS  Google Scholar 

  18. Chen, R., Song, S., Li, X., Liu, H., and Huang, D., Phosphorous deficiency restricts plant growth but induces pigment formation in the flower stalk of Chinese kale, Hortic. Environ. Biotechnol., 2013, vol. 54, pp. 243–248.

    Article  CAS  Google Scholar 

  19. Chiou, T.J., Liu, H., and Harrison, M.J., The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface, Plant J., 2001, vol. 25, pp. 281–293.

    Article  CAS  PubMed  Google Scholar 

  20. Broughton, W.J. and Dilworth, M.J., Control of leghaemoglobin synthesis in snake beans, Biochem. J., 1971, vol. 125, pp. 1075–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bahlawane, C., Baumgarth, B., Serrania, J., Ruberg, S., and Becker, A., Fine-tuning of galactoglucan biosynthesis in Sinorhizobium meliloti by differential WggR (ExpG)-, PhoB-, and MucR-dependent regulation of two promoters, J. Bacteriol., 2008, vol. 190, pp. 3456–3466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beringer, J.E., R factor transfer in Rhizobium leguminosarum, J. Gen. Microbiol., 1974, vol. 84, pp. 188–198.

    CAS  PubMed  Google Scholar 

  23. Simsek, S., Ojanen-Reuhs, T., Stephen, S.B., and Reuhs, B.L., Strain-ecotype specificity in Sinorhizobium melilotiMedicago truncatula symbiosis is correlated to succinoglycan oligosaccharide structure, J. Bacteriol., 2007, vol. 189, pp. 7733–7740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Torres-Quesada, O., Oruezabal, R.I., Peregrina, A., Jofre, E., Loret, J., Rivilla, R., Toro, N., and Jimenez-Zurdo, J.I., The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa, BMC Microbiol., 2010, vol. 10, pp. 71–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larose, G., Chenevert, R., Moutoglis, P., Gagne, S., Piche, Y., and Vierheilig, H., Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of symbiosis and the root colonizing arbuscular mycorrhizal fungus, J. Plant Physiol., 2002, vol. 159, pp. 1329–1339.

    Article  CAS  Google Scholar 

  26. Müller, R., Morant, M., Jarmer, H., Nilsson, L., and Nilsen, T.H., Genome-wide analysis of the Arabidopsis leaf transcriptome reveals interaction of phosphate and sugar metabolism, Plant Physiol., 2007, vol. 143, pp. 156–171.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hassan, S. and Mathesius, U., The role of flavonoids in root–rhizosphere signaling: opportunities and challenges for improving plant–microbe interactions, J. Exp. Bot., 2012, vol. 63, pp. 3429–3444.

    Article  CAS  PubMed  Google Scholar 

  28. Ghasem, F., Poustini, K., Besharati, H., Mohammadi, V.A., Abooei Mehrizi, F., and Goettfert, M., Pre-incubation of Sinorhizobium meliloti with luteolin, methyl jasmonate and genistein affecting alfalfa (Medicago sativa L.) growth, nodulation and nitrogen fixation under salt stress conditions, J. Agric. Sci. Technol., 2012, vol. 14, pp. 1255–1264.

    CAS  Google Scholar 

  29. Pakdaman, N. and Mostajeran, A., The effect of phosphate deficiency on quorum sensing signaling pathway of Sinorhizobium meliloti, Biol. J. Microorg., 2015, vol. 3, pp. 33–42.

    Google Scholar 

  30. Hoang, H.H., Becker, A., and Gonzalez, J.E., The LuxR homolog ExpR, in combination with the sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression, J. Bacteriol., 2004, vol. 186, pp. 5460–5472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pakdaman.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdaman, N., Mostajeran, A. Phosphate Limitation Alters Medicago–Sinorhizobium Signaling: Flavonoid Synthesis and AHL Production. Russ J Plant Physiol 65, 251–259 (2018). https://doi.org/10.1134/S1021443718020176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020176

Keywords

Navigation