Skip to main content
Log in

Overexpression of Loquat Dehydrin Gene EjDHN1 Promotes Cold Tolerance in Transgenic Tobacco

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Dehydrins (DHNs) play vital roles in response to dehydration stress in plants. To examine the contribution of EjDHN to low-temperature stress in loquat (Eriobotrya japonica Lindl.), EjDHN1 was overexpressed in tobacco (Nicotiana tabacum L.). The plant growth of transgenic lines was significantly better than wild type (WT) after 4 d of recovery from cold stress. Cold stress led to membrane lipid peroxidation and reduced photosystem II (PSII) activity in leaves, and these were less severe in transgenic lines. To examine oxidative stress tolerance, the plants were treated with different concentrations of methyl viologen (MV), which inhibited plant growth both in WT and transgenic lines. After exposure to 2.0 μM MV for 10 d, the WT plants had a dramatically lower survival rate. MV treatment in leaf disks confirmed that transgenic lines accumulated less reactive oxygen species (ROS) and suffered less lipid peroxidation. The results suggested that the tolerance of the transgenic plants to cold was increased, and EjDHN1 could protect cells against oxidative damage caused by ROS production under cold stress. It also provided evidences that the enhanced cold tolerance resulted from EjDHN1 overexpression could be partly due to their protective effect on membranes by alleviating oxidative stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

Chl:

chlorophyll

DHN:

dehydrin

H2O2 :

hydrogen peroxide

Hyg:

hygromycin

MDA:

malondialdehyde

MV:

methyl viologen

O 2 :

superoxide

PSII:

photosystem II

ROS:

reactive oxygen species

SOD:

superoxide dismutase

WT:

wild type

References

  1. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F., Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat, Plant Cell, 1998, vol. 10, pp. 623–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nylander, M., Svensson, J., Palva, E.T., and Welin, B.V., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana, Plant Mol. Biol., 2001, vol. 45, pp. 263–279.

    Article  CAS  PubMed  Google Scholar 

  3. Hara, M., Terashima, S., Fukaya, T., and Kuboi, T., Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco, Planta, 2003, vol. 217, pp. 290–298.

    CAS  PubMed  Google Scholar 

  4. Wisniewski, M., Webb, R., Balsamo, R., Close, T.J., Yu, X.M., and Griffith, M., Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60: a dehydrin from peach (Prunus persica), Physiol. Plant., 1999, vol. 105, pp. 600–608.

    Article  CAS  Google Scholar 

  5. Wisniewski, M.E., Bassett, C.L., Renaut, J., Farrell, R.J., Tworkoski, T., and Artlip, T.S., Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit, Tree Physiol., 2006, vol. 26, pp. 575–584.

    Article  CAS  PubMed  Google Scholar 

  6. Gao, W., Bai, S., Li, Q., Gao, C., Liu, G., Li, G., and Tan, F., Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra), PLoS One, 2013, vol. 8: e67462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, H., Yu, C., Li, H., Ouyang, B., Wang, T., Zhang, J., Wang, X., and Ye, Z., Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato, Plant Sci., 2015, vol. 231, pp. 198–211.

    Article  CAS  PubMed  Google Scholar 

  8. Hill, W., Jin, X.L., and Zhang, X.H., Expression of an arctic chickweed dehydrin, CarDHN, enhances tolerance to abiotic stress in tobacco plants, Plant Growth Regul., 2016, vol. 80, pp. 323–334.

    CAS  Google Scholar 

  9. Tommasini, L., Svensson, J.T., Rodriguez, E.M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., and Close, T.J., Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.), Funct. Integr. Genomics, 2008, vol. 8, pp. 387–405.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez, M., Águila, S.V., Arora, R., and Chen, K., Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus, Tree Genet. Genomes, 2012, vol. 8, pp. 149–162.

    Article  Google Scholar 

  11. Liang, D., Xia, H., Wu, S., and Ma, F., Genome-wide identification and expression profiling of dehydrin gene family in Malus domestica, Mol. Biol. Rep., 2012, vol. 39, pp. 10 759–10 768.

    Article  CAS  Google Scholar 

  12. Hussain, S., Niu, Q., Qian, M., Bai, S., and Teng, Y., Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia), Tree Genet. Genomes, 2015, vol. 11, p. 110.

    Article  Google Scholar 

  13. Kosová, K., Vítámvás, P., and Prášil, I.T., Expression of dehydrins in wheat and barley under different temperatures, Plant Sci., 2011, vol. 180, pp. 46–52.

    Article  PubMed  Google Scholar 

  14. Davik, J., Koehler, G., From, B., Torp, T., Rohloff, J., Eidem, P., Wilson, R.C., Sønsteby, A., Randall, S.K., and Alsheikh, M., Dehydrin, alcohol dehydrogenase, and central metabolite levels are associated with cold tolerance in diploid strawberry (Fragaria spp.), Planta, 2013, vol. 237, pp. 267–277.

    Article  Google Scholar 

  15. Lin, S., Sharpe, R.H., and Janick, J., Loquat: botany and horticulture, Horticult. Rev., 1999, vol. 23, pp. 233–276.

    Google Scholar 

  16. Xu, H., Yang, Y., Xie, L., Li, X., Feng, C., Chen, J., and Xu, C., Involvement of multiple types of dehydrins in the freezing response in loquat (Eriobotrya japonica), PLoS One, 2014, vol. 9, p. e87575.

    Google Scholar 

  17. Horsch, R.B., Fry, J.E., Hoffman, N.L., Eichholtz, D., Rogers, S.G., and Fraley, R.T., A simple and general method for transferring genes into plants, Science, 1985, vol. 227, pp. 1229–1231.

    Article  CAS  Google Scholar 

  18. Genty, B., Briantais, J.-M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta–Gen. Subjects, 1989, vol. 990, pp. 87–92.

    Article  CAS  Google Scholar 

  19. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 351–382.

    Google Scholar 

  20. Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    Article  CAS  PubMed  Google Scholar 

  21. Dhindsa, R.S., Plumb-Dhindsa, P., and Thorpe, T.A., Leaf senescence: correlated with increased levels of membrane-permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase, J. Exp. Bot., 1981, vol. 32, pp. 93–101.

    Article  CAS  Google Scholar 

  22. Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, pp. 59–66.

    Article  CAS  Google Scholar 

  23. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  24. Close, T.J., Dehydrins: a commonalty in the response of plants to dehydration and low temperature, Physiol. Plant., 1997, vol. 100, pp. 291–296.

    Article  CAS  Google Scholar 

  25. Shi, J., Liu, M., Chen, Y., Wang, J., and Lu, C., Heterologous expression of the dehydrin-like protein gene AmCIP from Ammopiptanthus mogolicus enhances viability of Escherichia coli and tobacco under cold stress, Plant Growth Regul., 2016, vol. 79, pp. 71–80.

    Article  CAS  Google Scholar 

  26. Chen, L., Zhong, H., Ren, F., Guo, Q.Q., Hu, X.P., and Li, X.B., A novel cold-regulated gene, COR25, of Brassica napus is involved in plant response and tolerance to cold stress, Plant Cell Rep., 2011, vol. 30, pp. 463–471.

    Google Scholar 

  27. Thompson, J.E., Legge, R.L., and Barber, R.F., The role of free radicals in senescence and wounding, New Phytol., 1987, vol. 105, pp. 317–344.

    Article  CAS  Google Scholar 

  28. Hara, M., Fujinaga, M., and Kuboi, T., Radical scavenging activity and oxidative modification of citrus dehydrin, Plant Physiol. Biochem., 2004, vol. 42, pp. 657–662.

    Article  CAS  PubMed  Google Scholar 

  29. Ning, J., Li, X., Hicks, L.M., and Xiong, L., A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice, Plant Physiol., 2010, vol. 152, pp. 876–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, H.M., Muramoto, K., Yamauchi, F., and Nokihara, K., Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein, J. Agric. Food Chem., 1996, vol. 44, pp. 2619–2623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Chen.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H.X., Li, X.Y., Xu, C.J. et al. Overexpression of Loquat Dehydrin Gene EjDHN1 Promotes Cold Tolerance in Transgenic Tobacco. Russ J Plant Physiol 65, 69–77 (2018). https://doi.org/10.1134/S102144371801020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371801020X

Keywords

Navigation