Russian Journal of Plant Physiology

, Volume 65, Issue 1, pp 63–68 | Cite as

S-Methylmethionine-Salicylate Pretreatment Reduces Low Temperature Stress in Maize

  • C. OláhEmail author
  • E. Ludmerszki
  • I. Rácz
  • G. Balassa
  • S. Rudnóy
Research Papers


Low temperature is one of the major environmental stressors affecting cultivated plants, damaging metabolic processes and cell structures. Due to its tropical origin maize (Zea mays L.) is particularly sensitive to chilling stress. The present study aimed to ascertain whether the amino acid derivative S-methylmethionine-salicylate (MMS) is effective in reducing cold stress injury in maize. In order to obtain more detailed information on the effect of MMS, changes were examined at the physiological, gene expression and metabolic levels. MMS pretreatment helped to preserve the photosynthetic activity, enhanced the expression of certain genes in the phenylpropanoid pathway and was measured higher anthocyanin content in the stalk. The results show that MMS pretreatment could reduce the damage caused by low temperature in maize.


Zea mays S-methylmethionine-salicylate cold stress photosystem II phenylpropanoid pathway 



chalcone synthase


cinnamate 4- hydroxylase




non-photochemical quenching


phenylalanine ammonia-lyase


photosystem II


reactive oxygen species


salicylic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chinnusamy, V. and Zhu, J., Cold stress regulation of gene expression in plants, Trends Plant Sci., 2007, vol. 12, pp. 444–451.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhu, J., Dong, C.H., and Zhu, J.K., Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation, Curr. Opin. Plant Biol., 2007, vol. 10, pp. 290–295.CrossRefPubMedGoogle Scholar
  3. 3.
    Foyer, C.H., Vanacker, H., Gomez, D.L., and Harbinson, J., Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: review, Plant Physiol. Biochem., 2002, vol. 40, pp. 659–668.CrossRefGoogle Scholar
  4. 4.
    Nishiyama, Y. and Murata, N., Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery, Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 8777–8796.CrossRefPubMedGoogle Scholar
  5. 5.
    Heidarvand, L. and Amiri, R.M., What happens in plant molecular responses to cold stress? Acta Physiol. Plant., 2010, vol. 32, pp. 419–431.CrossRefGoogle Scholar
  6. 6.
    Vogt, T., Phenylpropanoid biosynthesis, Mol. Plant, 2010, vol. 3, pp. 2–20.CrossRefPubMedGoogle Scholar
  7. 7.
    Ferreyra, L.M.F., Rius, P.S., and Casati, P., Flavonoids: biosynthesis, biological functions, and biotechnological applications, Front. Plant Sci., 2012, vol. 3, pp. 1–15.Google Scholar
  8. 8.
    Yao, F.P., Zhao, X.H., Luo, P.X., Gao, F., Yao, P.H., Li, L.C., Chen, H., and Wu, Q., Chalcone synthase homologous genes cloning and expression pattern in flowering Fagopyrum tataricum Gaertn., Russ. J. Plant Physiol., 2015, vol. 63, pp. 790–799.CrossRefGoogle Scholar
  9. 9.
    Szegö, D., Kósa, E., and Horváth, E., Role of S-methylmethionine in the plant metabolism, Acta Agron. Hung., 2007, vol. 55, pp. 491–508.CrossRefGoogle Scholar
  10. 10.
    Rácz, I., Páldi, E., Szalai, G., Janda, T., Pál, M., and Lásztity, D., S-Methylmethionine reduces cell membrane damage in higher plants exposed to low-temperature stress, J. Plant Physiol., 2008, vol. 165, pp. 1483–1490.CrossRefPubMedGoogle Scholar
  11. 11.
    Páldi, K., Rácz, I., Szigeti, Z., and Rudnóy, S., S-Methylmethionine alleviates the cold stress by protection of the photosynthetic apparatus and stimulation of the phenylpropanoid pathway, Biol. Plant., 2014, vol. 58, pp. 189–194.CrossRefGoogle Scholar
  12. 12.
    Ludmerszki, E., Rudnóy, S., Almási, A., Szigeti, Z., and Rácz, I., The beneficial effects of S-methylmethionine in maize in the case of Maize dwarf mosaic virus infection, Acta Biol. Szeged., 2011, vol. 55, no. 1, pp. 109–112.Google Scholar
  13. 13.
    Hayat, Q., Hayat, S., Irfan, M., and Ahmed, A., Effect of exogenous salicylic acid under changing environment: a review, Environ. Exp. Bot., 2010, vol. 68, pp. 14–25.CrossRefGoogle Scholar
  14. 14.
    Janda, T., Szalai, G., Tari, I., and Páldi, E., Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants, Planta, 1999, vol. 208, pp. 175–180.CrossRefGoogle Scholar
  15. 15.
    Horváth, E., Szalai, G., and Janda, T., Induction of abiotic stress tolerance by salicylic acid signaling, J. Plant Growth Regul., 2007, vol. 26, pp. 290–300.CrossRefGoogle Scholar
  16. 16.
    Fragnière, C., Serrano, M., Abou-Mansour, E., Métraux, J., and L’Haridon, F., Salicylic acid and its location in response to biotic and abiotic stress, FEBS Lett., 2011, vol. 585, pp. 1847–1852.CrossRefPubMedGoogle Scholar
  17. 17.
    Solti, Á., Gáspár, L., Mészáros, I., Szigeti, Z., Lévai, L., and Sárvári, É., Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus glauca), Ann. Bot., 2008, vol. 102, pp. 771–782.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    D'Ambrosio, N., Guadagno, C.R., and Virzo de Santo, A., Is qE always the major component of non-photochemical quenching? in Photosynthesis. Energy from the Sun, Allen, F.J., Gantt, E., Golbeck, H.J., and Osmond, B., Eds., New York: Springer-Verlag, 2008, pp. 1001–1004.Google Scholar
  19. 19.
    Hendrickson, L., Förster, B., Pogson, J.B., and Chow, S.W., A simple chlorophyll fluorescence parameter that correlates with the rate coefficient of photoinactivation of photosystem II, Photosynth. Res., 2005, vol. 84, pp. 43–49.CrossRefPubMedGoogle Scholar
  20. 20.
    Schmittgen, T.D. and Livak, K.J., Analyzing real-time PCR data by comparative CT method, Nat. Prot., 2008, vol. 3, pp. 1101–1108.CrossRefGoogle Scholar
  21. 21.
    Kósa, E., Szegö, D., and Horváth, E., Relationship between S-methylmethionine treatment and activities of antioxidant enzymes in maize (Zea mays L.) leaves at chilling temperatures, Acta Agron. Hung., 2009, vol. 57, no. 4, pp. 461–469.CrossRefGoogle Scholar
  22. 22.
    Kósa, E., Szegö, D., Horváth, E., Rácz, I., Szigeti, Z., Lásztity, D., and Páldi, E., Effect of S-methylmethionine on the photosynthesis in maize at different chilling temperatures, Cent. Eur. J. Biol., 2011, vol. 6, pp. 75–83.Google Scholar
  23. 23.
    Janda, K., Hideg, É., Szalai, G., Kovács, L., and Janda, T., Salicylic acid may indirectly influence the photosynthetic electron transport, J. Plant Physiol., 2012, vol. 169, pp. 971–978.CrossRefPubMedGoogle Scholar
  24. 24.
    Ludmerszki, E., Almási, A., Rácz, I., Szigeti, Z., Solti, Á., Oláh, C., and Rudnóy, S., S-Methylmethionine contributes to enhanced defense against Maize dwarf mosaic virus infection in maize, Braz. J. Bot., 2015, vol. 38, pp. 771–782.CrossRefGoogle Scholar
  25. 25.
    Chen, J.Y., Wen, P.F., Kong, W.F., Pan, Q.H., Zhan, J.C., Li, J.M., Wan, S.B., and Huang, W.D., Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries, Postharvest Biol. Technol., 2006, vol. 40, pp. 64–72.CrossRefGoogle Scholar
  26. 26.
    Wen, P.F., Chen, J.Y., Wan, S.B., Kong, W.F., Zhang, P., Wang, W., Zhan, J.C., and Huang, W.D., Salicylic acid activates phenylalanine ammonia-lyase in grape berry in response to high temperature stress, Plant Growth Regul., 2008, vol. 55, pp. 1–10.CrossRefGoogle Scholar
  27. 27.
    Napoli, C., Lemieux, C., and Jorgensen, R., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell, 1990, vol. 2, pp. 279–289.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Christie, J.P., Alfenito, R.M., and Walbot, V., Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings, Planta, 1994, vol. 194, pp. 541–549.CrossRefGoogle Scholar
  29. 29.
    Jaakola, L. and Hohtola, A., Effect of latitude on flavonoid biosynthesis in plants, Plant Cell Environ., 2010, vol. 33, pp. 1239–1247.PubMedGoogle Scholar
  30. 30.
    Thomashow, F.M., Plant cold acclimation: freezing tolerance genes and regulatory mechanisms, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999, vol. 50, pp. 571–599.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • C. Oláh
    • 1
    Email author
  • E. Ludmerszki
    • 1
  • I. Rácz
    • 1
  • G. Balassa
    • 1
  • S. Rudnóy
    • 1
  1. 1.Department of Plant Physiology and Molecular Plant BiologyEötvös Loránd UniversityBudapestHungary

Personalised recommendations