Ahmad, P., Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., John, R., and Egamberdieva, D., Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system, Front. Plant Sci., 2015, vol. 6, p. 868.
PubMed
PubMed Central
Google Scholar
Ahmad, P., Abdel Latef, A.A., Hashem, A., Abd-Allah, E.F., Gucel, S., and Tran, L.S.P., Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea, Front. Plant Sci., 2016, vol. 7, p. 347.
PubMed
PubMed Central
Google Scholar
Ahanger, M.A. and Agarwal, R.M., Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L.), Protoplasma, 2017, vol. 254, no. 4, pp. 1471–1486. doi 10.1007/s00709-016-1037-0
CAS
Article
PubMed
Google Scholar
Khan, M.I.R., Asgher, M., and Khan, N.A., Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mung bean (Vigna radiata L.), Plant Physiol. Biochem., 2014, vol. 80, pp. 67–74.
CAS
Article
PubMed
Google Scholar
Ahmad, P., Nabi, G., and Ashraf, M., Cadmiuminduced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid, S. Afr. J. Bot., 2011, vol. 77, pp. 36–44.
CAS
Article
Google Scholar
Kaya, C., Kirnak, H., Higgs, D., and Saltali, K., Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high salinity, Sci. Hortic., 2002, vol. 93, pp. 65–74.
CAS
Article
Google Scholar
Borsani, O., Valpuesta, V., and Botella, M.A., Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings, Plant Physiol., 2001, vol. 126, pp. 1024–1030.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hiscox, J.T. and Israelstam, G., A method for the extraction of chlorophyll from leaf tissue without maceration, Can. J. Bot., 1979, vol. 57, pp. 1332–1334.
CAS
Article
Google Scholar
Bates, L., Waldren, R., and Teare, I., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.
CAS
Article
Google Scholar
Grieve, C.M. and Grattan, S.R., Rapid assay for determination of water soluble quaternary ammonium compounds, Plant Soil, 1983, vol. 70, pp. 303–307.
CAS
Article
Google Scholar
Smart, R.E. and Bingham, G.E., Rapid estimates of relative water content, Plant Physiol., 1974, vol. 53, pp. 258–260.
CAS
Article
PubMed
PubMed Central
Google Scholar
Velikova, V., Yordanov, I., and Edreva, A., Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, pp. 59–66.
CAS
Article
Google Scholar
Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.
CAS
Article
PubMed
Google Scholar
Dionisio-Sese, M.L. and Tobita, S., Antioxidant responses of rice seedlings to salinity stress, Plant Sci., 1998, vol. 135, pp. 1–9.
CAS
Article
Google Scholar
Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–259.
CAS
Article
PubMed
Google Scholar
Van Rossum, M.V., Alberda, M. and van der Plas, L.H., Role of oxidative damage in tulip bulb scale micropropagation, Plant Sci., 1997, vol. 130, pp. 207–216.
Article
Google Scholar
Luck, H., Catalases, in Methods of Enzymatic Analysis, Bergmeyer, H.U., Ed., New York: Academic, 1963, pp. 885–894.
Google Scholar
Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.
CAS
Google Scholar
Foyer, C.H. and Halliwell, B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, pp. 21–25.
CAS
Article
PubMed
Google Scholar
Kusaba, S., Kano-Murakami, Y., Matsuoka, M., Tamaoki, M., Sakamoto, T., Yamaguchi, I., and Fukumoto, M., Alteration of hormone levels in transgenic tobacco plants over-expressing a rice homeobox gene OSH1, Plant Physiol., 1998, vol. 116, pp. 471–476.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ahmad, P., Hakeem, K.R., Kumar, A., Ashraf, M., and Akram, N.A., Salt induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.), Afr. J. Biotechnol., 2012, vol. 11, pp. 2694–2703.
CAS
Google Scholar
Ashraf, M.A., Ashraf, M., and Ali, Q., Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents, Pak. J. Bot., 2010, vol. 42, pp. 559–566.
CAS
Google Scholar
Karlidag, H., Yildirim, E., and Turan, M., Salicylic acid ameliorates the adverse effect of salt stress on strawberry, Sci. Agric., 2009, vol. 66, pp. 180–187.
CAS
Article
Google Scholar
Li, T., Hu, Y., Du, X., Tang, H., Shen, C., and Wu, J., Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems, PLoS One, 2014, vol. 9: e109492.
Google Scholar
Szepesi, A., Csiszar, J., Bajkan, S., Gemes, K., Horvath, F., Erdei, L., Deer, A.K., Simon, M.L., and Tari, I., Role of salicylic acid pre-treatment on the acclimation of tomato plants to salt and osmotic stress, Acta Biol. Szeged., 2005, vol. 49, pp.123–125.
Google Scholar
Csiszar, J., Horvath, E., Vary, Z., Galle, A., Bela, K., and Brunner, S., Glutathione transferase super gene family in tomato: salt stress-regulated expression of representative genes from distinct GST classes in plants primed with salicylic acid, Plant Physiol. Biochem., 2014, vol. 78, pp. 15–26.
CAS
Article
PubMed
Google Scholar
Sakhabutdinova, A.R., Fatkhutdinova, D.R., Bezrukova, M.V., and Shakirova, F.M., Salicylic acid prevents the damaging action of stress factors on wheat plants, Bulg. J. Plant Physiol., 2003, special issue, pp. 314–319.
Google Scholar
Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., Al Huqail, A.A., Egamberdieva, D., and Wirth, S., Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance, Saudi J. Biol. Sci., 2015, vol. 23, pp. 272–281.
Article
PubMed
PubMed Central
Google Scholar
Egamberdieva, D., Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat, Acta Physiol. Plant., 2009, vol. 31, pp. 861–864.
CAS
Article
Google Scholar
Ghodrat, V., Rousta, M.J., and Tadaion, M.S., Effect of priming with indole-butyric acid (IBA) on germination and growth of wheat under saline conditions, Int. J. Agric. Crop Sci., 2012, vol. 4, pp. 289–292.
Google Scholar