Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 833–838 | Cite as

Nanocomplexes on the basis of Taunit associated with biocides as effective anti-cyanobacterial agents

  • A. V. Timofeeva
  • V. N. Tashlitsky
  • A. G. Tkachev
  • L. A. Baratova
  • O. A. Koksharova
Research Papers


Cyanobacteria are photoautotrophic bacteria that are known also as blue-green algae. They accumulate on different surfaces and objects and contribute to their biodegradation. Moreover, cyanobacteria produce toxins, which lead to harmful environmental and human health impacts. Hence, cyanobacterial growth control problem is very vital. The goal of the study was to obtain new nanocomplexes on the basis of a modern nanomaterial Taunit associated with antibiotic chloramphenicol and herbicide diuron and to test their antimicrobial effect against a model organism such as the unicellular cyanobacterium Synechocystis sp. PCC 6803. A nanomaterial made of multiwalled carbon nanotubes (MWCNTs) called Taunit was used for the first time to obtain nanocomplexes coupled either with herbicide diuron (DCMU (3-(3,4-dichlorophenyl)- 1,1-dimethylurea) or with antibiotic chloramphenicol. A small amount of Taunit (~1 mg) was needed to adsorb micrograms of diuron or chloramphenicol. The new formed nanocomplexes differentiate in their antimicrobial activity, which could be explained by the difference in their chemical mechanism of action. Taunit − diuron complex showed a higher biocide action against cyanobacterium than the Taunit − chloramphenicol complex. The results allow to discuss the prospects of research on the use of Taunit − diuron complex as a coating for various surfaces exposed to cyanobacteria fouling.


multiwalled carbon nanotubes Taunit nanocomplexes cyanobacteria herbicide diuron antibiotic antimicrobial activity 



3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron)


multiwalled carbon nanotubes


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edyvean, R.G.J. and Videla, H.A., Biological corrosion, Interdiscip. Sci. Rev., 1991, vol. 16, pp. 267–282.CrossRefGoogle Scholar
  2. 2.
    Ortega-Calvo, J.J., Hernandez-Marine, M., and Saiz-Jimenez, C., Biodeterioration of building materials by cyanobacteria and algae, Int. Biodeterior. Biodegrad., 1991, vol. 28, pp. 165–185.CrossRefGoogle Scholar
  3. 3.
    Urzí, C. and Krumbein, W.E., Microbiological impacts on the cultural heritage, in Durability and Changes: The Science, Responsibility, and Cost of Sustaining Cultural Heritage, Krumbein, W.E., Brimblecombe, P., Cosgrove, D.E., and Stainforth, S., Eds., New York: Wiley, 1994, pp. 107–135.Google Scholar
  4. 4.
    Tomaselli, L., Lamenti, G., Bosco, M., and Tiano, P., Biodiversity of photosynthetic micro-organisms dwelling on stone monuments, Int. Biodeterior. Biodegrad., 2000, vol. 46, pp. 251–258.CrossRefGoogle Scholar
  5. 5.
    Crispim, C.A. and Gaylarde, C.C., Cyanobacteria and biodeterioration of cultural heritage: a review, Microb. Ecol., 2005, vol. 49, pp. 1–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Tkachev, A.G., Mikhaleva, Z.A., and Buzakova, E.A., Investigation of methods for improving the activity of catalysts for producing nanostructures carbon materials, Theor. Found. Chem. Eng., 2009, vol. 43, pp. 739–742.CrossRefGoogle Scholar
  7. 7.
    Dyachkova, T.P., Melezhyk, A.V., Gorsky, S.Yu., Anosova, I.V., and Tkachev, A.G., Some aspects of functionalization and modification of carbon nanomaterials, Nanosystems: Phys. Chem. Math., 2013, vol. 4, pp. 605–621.Google Scholar
  8. 8.
    Timofeeva, A.V., Ilyina, M.V., Stepashkina, E.A., Baratova, L.A., and Katrukha, G.S., Production of taunit–antibiotic nanocomplexes and study of their antifungal activity relative to Aspergillus niger and Candida albicans, Appl. Biochem. Microbiol., 2015, vol. 51, pp. 43–47.CrossRefGoogle Scholar
  9. 9.
    Pongs, O., Chloramphenicol, in Mechanism of Action Antibacterial Agents, Hahn, F.E., Ed., Berlin: Springer, 1979, pp. 26–42.CrossRefGoogle Scholar
  10. 10.
    Maule, A. and Wright, S.J.L., Herbicide effects on the population growth of some green algae and cyanobacteria, J. Appl. Microbiol., 1984, vol. 57, pp. 369–379.Google Scholar
  11. 11.
    Chauvat, F., de Vries, L., van der Ende, A., and van Arkel, G.A., A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803, Mol. Gen. Genet., 1986, vol. 204, pp. 185–191.CrossRefGoogle Scholar
  12. 12.
    Okada, K., Satoh, K., and Katoh, S., Chloramphenicol is an inhibitor of photosynthesis, FEBS Lett., 1991, vol. 295, pp. 155–158.CrossRefPubMedGoogle Scholar
  13. 13.
    Ermakova-Gerdes, S., Yu, Z., and Vermaas, W., Targeted random mutagenesis to identify functionally important residues in the D2 protein of photosystem II in Synechocystis sp. strain PCC 6803, J. Bacteriol., 2001, vol. 183, pp. 145–154.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Powles, S.B., Preston, C., Bryan, I.B., and Jutsum, A.R., Herbicide resistance: impact and management, Adv. Agron., 1996, vol. 58, pp. 57–93.CrossRefGoogle Scholar
  15. 15.
    ICH Q2B, Guideline Validation of Analytical Procedures Methodology, Comments for Its Application, 1996, pp. 71–76.Google Scholar
  16. 16.
    Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. Gen. Microbiol., 1979, vol. 111, pp. 1–161.Google Scholar
  17. 17.
    Chitnis, P.R., Reilly, P.A., and Nelson, N., Insertional inactivation of the gene encoding subunit II of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803, J. Biol. Chem., 1989, vol. 264, pp.18381–18385.PubMedGoogle Scholar
  18. 18.
    Kim, J.H., Chan, K.L., Mahaney, N., and Campbell, B.C., Antifungal activity of redox-active benzaldehydes that target cellular antioxidation, Ann. Clin. Microbiol., 2011, vol. 10, pp. 2–16.CrossRefGoogle Scholar
  19. 19.
    Chen, G.C., Shan, X.Q., Pei, Z.G., Wang, H., Zheng, L.R., Zhang, J., and Xie, Y.N., Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead, J. Hazard. Mater., 2011, vol. 188, pp. 156–163.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun, K., Zhang, Z., Gao, B., Wang, Z., Xu, D., Jin, J., and Liu, X., Adsorption of diuron, fluridone and norflurazon on single-walled and multi-walled carbon nanotubes, Sci. Total Environ., 2012, vol. 439, pp. 1–7.PubMedGoogle Scholar
  21. 21.
    Allen, M.M., Turnburke, A.C., Lagace, E.A., and Steinback, K.E., Effects of photosystem II herbicides on the photosynthetic membranes of the cyanobacterium Aphanocapsa 6308, Plant Physiol., 1983, vol. 71, pp. 388–392.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pongs, O., Bald, R., and Erdmann, V.A., Identification of chloramphenicol-binding protein in Escherichia coli ribosomes by affinity labeling, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, pp. 2229–2233.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Castenholz, R.W., General characteristics of the cyanobacteria, in Bergey’s Manual of Systematics of Archaea and Bacteria, New York: Wiley, pp. 1–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. V. Timofeeva
    • 1
  • V. N. Tashlitsky
    • 2
  • A. G. Tkachev
    • 3
  • L. A. Baratova
    • 1
  • O. A. Koksharova
    • 1
    • 4
  1. 1.Lomonosov Moscow State UniversityBelozersky Instutute of Physical-Chemical BiologyMoscowRussia
  2. 2.Faculty of СhemistryLomonosov Moscow State UniversityMoscowRussia
  3. 3.Tambov State Technical University (TSTU)TambovRussia
  4. 4.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations