Advertisement

Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 939–945 | Cite as

Endowing plants with tolerance to virus infection by their preliminary treatment with short interfering RNAs

  • M. Yu. Sutula
  • A. Zh. Akbassova
  • T. M. Yergaliev
  • Zh. A. Nurbekova
  • G. S. Mukiyanova
  • R. T. Omarov
Research Papers

Abstract

RNA interference (RNAi) is one of the key defense mechanisms directed against virus infections in plants and other organisms. In this case in plants infected with viruses, short interfering RNAs (siRNAs) are formed from two-chain replicated forms of virus molecules of RNA. These siRNAs program one of the RNAi basic components, RNA-induced complex of genes silencing (RISC, RNA induced silencing complex) associated with sequence-specific removing virus RNA. Virus protein P19 is a suppressor of RNAi and is capable of trapping the siRNAs being formed before their binding with RISC. Here, it was shown that preliminary entering leaves of plants Nicotiana benthamiana Domin (before virus infecting) of siRNAs eluted from the complex P19/siRNA from the infected plant lowers development of infection symptoms induced by tomato bushy stunt virus (TBSV) in inoculated plants. Exogenous addition of suppressor-associated siRNAs to plants leads to not only lowering virus accumulation but also to survival of infected plants. Thus, it has been established that preliminary addition of virus siRNAs elevates plant tolerance to the virus infection by means of early programming RISC and activation of the defense action of RNAi.

Keywords

Nicotiana benthamiana RNA interference siRNA gel chromatography complex P19/siRNA 

Abbreviations

Ago

protein Argonaut

Asp

asparagine

P19

virus suppressor protein

RISC

RNA-induced complex of genes silencing

RNAi

RNA interference

miRNAs

micro RNAs

siRNA

short interfering RNAs

TBSV

tomato bushy stunt virus

nt

nucleotide

Trp

tryptophan

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mattick, J.S. and Makunin, I.V., Non-coding RNA, Hum. Mol. Genet., 2006, vol. 15, pp. 17–29.CrossRefGoogle Scholar
  2. 2.
    Tabernero, J., Shapiro, G.I., LoRusso, P.M., Cervantes, A., Schwartz, G.K., Weiss, G.J., Paz-Ares, L., Cho, D.C., Infante, J.R., Alsina, M., Gounder, M.M., Falzone, R., Harrop, J., White, A., Toudjarska, I., et al., First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement, Cancer Discov., 2013, vol. 3, pp. 406–417.CrossRefPubMedGoogle Scholar
  3. 3.
    Schultheis, B., Strumberg, D., Santel, A., Vank, C., Gebhardt, F., Keil, O., Lange, C., Giese, K., Kaufmann, J., Khan, M., and Drevs, J., First-inhuman phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors, J. Clin. Oncol., 2014, vol. 32, pp. 4141–4148.CrossRefPubMedGoogle Scholar
  4. 4.
    Bader, A.G., Brown, D., Stoudemire, J., and Lammers, P., Developing therapeutic microRNAs for cancer, Gene Ther., 2011, vol. 18, pp. 1121–1126.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    DeVincenzo, J., Lambkin-Williams, R., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., Meyers, R., Gollob, J., and Vaishnaw, A., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 8800–8805.PubMedGoogle Scholar
  6. 6.
    Chandra, P.K., Kundu, A.K., Hazari, S., Chandra, S., Bao, L., Ooms, T., Morris, G.F., Wu, T., Mandal, T.K., and Dash, S., Inhibition of hepatitis C virus replication by intracellular delivery of multiple siRNAs by nanosomes, Mol. Ther., 2012, vol. 20, pp. 1724–1736.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sendi, H., Mehrab-Mohseni, M., Foureau, D.M., Ghosh, S., Walling, T.L., Steuerwald, N., Zamor, P.J., Kaplan, K.J., Jacobs, C., Ahrens, W.A., Russo, M.W., Clemens, M.G., Shrum, L.W., and Bonkovsky, H.L., MiR-122 decreases HCV entry into hepatocytes through binding to the 3' UTR of OCLN mRNA, Liver Int., 2015, vol. 35, pp. 1315–1323.CrossRefPubMedGoogle Scholar
  8. 8.
    Burgyan, J., Virus induced RNA silencing and suppression: defense and counter defense, J. Plant Pathol., 2006, vol. 88, pp. 233–244.Google Scholar
  9. 9.
    Hannon, G.J., RNA interference, Nature, 2002, vol. 418, pp. 244–251.CrossRefPubMedGoogle Scholar
  10. 10.
    Baulcombe, D., RNA silencing in plants, Nature, 2004, vol. 431, pp. 356–363.CrossRefPubMedGoogle Scholar
  11. 11.
    Omarov, R.T., Ciomperlik, J.J., and Scholthof, H.B., RNAi-associated ssRNA-specific ribonucleases in Tombusvirus P19 mutant-infected plants and evidence for a discrete siRNA-containing effector complex, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 1714–1719.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    McManus, M.T., Small RNAs and immunity, Immunity, 2004, vol. 21, pp. 747–756.CrossRefPubMedGoogle Scholar
  13. 13.
    Manoharan, M., RNA interference and chemically modified small interfering RNAs, Curr. Opin. Chem. Biol., 2004, vol. 8, pp. 570–579.CrossRefPubMedGoogle Scholar
  14. 14.
    Fire, A., Xu, S.Q., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 1998, vol. 391, pp. 806–811.CrossRefPubMedGoogle Scholar
  15. 15.
    Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J., Role for a bidentate ribonuclease in the initiation step of RNA interference, Nature, 2001, vol. 409, pp. 363–366.CrossRefPubMedGoogle Scholar
  16. 16.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, 2001, vol. 411, pp. 494–498.CrossRefPubMedGoogle Scholar
  17. 17.
    Zamore, P.D., Plant RNAi: how a viral silencing suppressor inactivates siRNA, Curr. Biol., 2004, vol. 14, pp. 198–200.CrossRefGoogle Scholar
  18. 18.
    Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., and Burgyan, J., Plant virus-derived small interfering RNAs originate predominantly from highly structured single stranded viral RNAs, J. Virol., 2005, vol. 79, pp. 7812–7818.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Vargason, J.M., Szittya, G., Burgyan, J., and Hall, T.M., Size selective recognition of siRNA by an RNA silencing suppressor, Cell, 2003, vol. 115, pp. 799–811.CrossRefPubMedGoogle Scholar
  20. 20.
    Ye, K.Q., Malinina, L., and Patel, D.J., Recognition of small interfering RNA by a viral suppressor of RNA silencing, Nature, 2003, vol. 426, pp. 874–878.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lakatos, L., Szittya, G., Silhavy, D., and Burgyán, J., Molecular mechanism of RNA silencing suppression mediated by P19 protein of tombusviruses, EMBO J., 2004, vol. 23, pp. 876–884.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Scholthof, H.B., The Tombusvirus-encoded P19: from irrelevance to elegance, Nat. Rev. Microbiol., 2006, vol. 4, pp. 405–411.CrossRefPubMedGoogle Scholar
  23. 23.
    Calabrese, J.M. and Sharp, P.A., Characterization of the short RNAs bound by the P19 suppressor of RNA silencing in mouse embryonic stem cells, RNA, 2006, vol. 12, pp. 2092–2102.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Silhavy, D., Molnar, A., Lucioli, A., Szittya, G., Hornyik, C., Tavazza, M., and Burgyán, J., A viral protein suppresses RNA silencing and binds silencing-generated, 21-to 25-nucleotide double-stranded RNAs, EMBO J., 2002, vol. 21, pp. 3070–3080.PubMedGoogle Scholar
  25. 25.
    Behlke, M.A., Progress towards in vivo use of siRNAs, Mol. Ther., 2006, vol. 13, pp. 644–670.CrossRefPubMedGoogle Scholar
  26. 26.
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  27. 27.
    Rand, T.A., Petersen, S., Du, F., and Wang, X., Argonaute 2 cleaves the anti-guide strand of siRNA during RISC activation, Cell, 2005, vol. 123, pp. 621–629.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Yu. Sutula
    • 1
  • A. Zh. Akbassova
    • 1
  • T. M. Yergaliev
    • 1
  • Zh. A. Nurbekova
    • 1
  • G. S. Mukiyanova
    • 1
  • R. T. Omarov
    • 1
  1. 1.Gumilev Eurasian National UniversityAstanaKazakhstan

Personalised recommendations