Skip to main content
Log in

Salinity–induced modulations in the protective defense system and programmed cell death in Nostoc muscorum

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

To study the biochemical adaptive responses of the blue green algae Nostoc muscorum to the salinity- induced stress they were exposed to various concentrations (5, 10, 15, 20 or 200 mM) of sodium chloride (NaCl). A dose-dependent inhibition of total protein content showed an adverse effect of NaCl on the growth of N. muscorum. Four-day treatment of NaCl (5–20 mM) progressively increased the content of the total peroxide with subsequent increase of the superoxide dismutase (SOD) activity, proline and total phenol content only up to 10 mM NaCl. Higher concentrations of NaCl caused significant decrease in both the enzymatic and non-enzymatic antioxidants. Induction of two polypeptides of ~29.10 and 40.15 kD as well as upregulation of many polypeptides as compared to control indicates the induction of SOD and dehydrin-like proteins, which supports the theory of adaptation against the salt stress. Furthermore, adaptation of N. muscorum to lower concentrations (5–20 mM) of NaCl was also confirmed by no fragmentation of DNA while DNA fragmentation indicating programmed cell death (PCD) could only be seen at 200 mM NaCl for 12 hours. We hypothesized that proline may confer a positive role to combat salinity stress and the same was confirmed by treatment of the test blue green algae with exogenous proline (1 and 10 μM). The results exhibited 16% reduction in the level of total peroxides, which is a well known oxidative stress marker in the 10 μM proline-treated NaCl group as compared to direct exposure to NaCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

chl:

chlorophyll

DHN:

dehydrin

MDA:

malondialdehyde

PCD:

programmed cell death

ROS:

reactive oxygen species

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SOD:

superoxide dismutase

References

  1. Syiem, B.M. and Nongrum, A.N., Increase in intracellular proline content in Anabaena variabilis during stress conditions, J. Appl. Nat. Sci., 2011, vol. 3, pp. 119–123.

    CAS  Google Scholar 

  2. Demiral, T. and Türkan, I., Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress, Environ. Exp. Bot., 2006, vol. 56, pp. 72–79.

    Article  CAS  Google Scholar 

  3. Ma, P. and Liu, J., Leymus chinensis that enhances salt stress tolerance in Saccharomyces cerevisiae: isolation and characterization of a novel plasma membrane intrinsic protein gene, LcPIP1, Appl. Biochem. Biotechnol., 2012, vol. 166, pp. 479–485.

    Article  CAS  PubMed  Google Scholar 

  4. Affenzeller, M.J., Darehshouri, A., Andosch, A., Lutz, C., and Lutz, M.U., Salt stress-induced cell death in the unicellular green alga Micrasterias denticulate, J. Exp. Bot., 2009, vol. 60, pp. 939–954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Unsal, N.P., Buyuktuncer, E.D., and Tufekci, M.A., Programmed cell death in plants, J. Cell Mol. Biol., 2005, vol. 4, pp. 9–23.

    Google Scholar 

  6. Srivastava, A.K., Bhargava, A.P., and Rai, L.C., Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum, World J. Microbiol. Biotechnol., 2005, vol. 22, pp. 1291–1298.

    Article  Google Scholar 

  7. Srivastava, A.K., Bhargava, P., Kumar, A., Rai, L.C., and Neilan, B.A., Molecular characterization and effect of salinity on cyanobacterial community from rice fields of Eastern Uttar Pradesh, India, Saline Syst., 2009, vol. 5:4.

    Article  Google Scholar 

  8. Srivastava, A.K., Assessment of salinity-induced antioxidative defense system of diazotrophic cyanobacterium Nostoc muscorum, J. Microbiol. Biotechnol., 2010, vol. 20, pp. 1506–1512.

    Article  CAS  PubMed  Google Scholar 

  9. Huges, E.O. and Garham, P.R., A toxicity of a unialgal culture of Microcystis aeruginosa, Can. J. Microbiol., 1958, vol. 4, pp. 215–236.

    Article  Google Scholar 

  10. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 269–275.

    Google Scholar 

  11. Mackinney, G., Absorption of light by chlorophyll solutions, J. Biol. Chem., 1941, vol. 140, pp. 315–322.

    CAS  Google Scholar 

  12. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutase. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sagisaka, S., The occurrence of peroxide in a perennial plant, Populus gelrica, Plant Physiol., 1976, vol. 57, pp. 308–309.

    Article  CAS  PubMed  Google Scholar 

  14. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  15. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water stress studies, Plant Soil, 1975, vol. 39, pp. 205–207.

    Article  Google Scholar 

  16. Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphor molybdic-phosphotungstic acid reagents, Am. J. Enol. Viticult., 1965, vol. 16, pp. 144–158.

    CAS  Google Scholar 

  17. Ivleva, N.B. and Golden, S.S., Circadian rhythms: methods and protocols, Meth. Mol. Biol., 2008, vol. 362, pp. 365–373.

    Article  Google Scholar 

  18. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  19. Sambrook, J. and Russell, D., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 2001.

    Google Scholar 

  20. Whitton, B.A. and Potts, M., The ecology of cyanobacteria: their diversity in time and space, New York: Kluwer, 2000.

    Google Scholar 

  21. Tang, D., Shi, S., Li, D., Hua, C., and Liu, Y., Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress, J. Arid. Environ., 2007, vol. 71, pp. 312–320.

    Article  Google Scholar 

  22. Liang, X. and Zhang, L., Natarajan, S.K., and Becker, D.F., Proline mechanisms of stress survival, Antioxid. Redox Signal., 2013, vol. 19, pp. 998–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hayat, S., Hayat, Q., Alyemeni, M.N., Wani, A.S., Pichtel, J., and Ahmad, A., Role of proline under changing environments, Plant Signal. Behav., 2012, vol. 7, pp. 1456–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mazid, M., Khan, T.A., and Mohammad, F., Role of secondary metabolites in defense mechanisms of plants, Biol. Med., 2011, vol. 3, pp. 232–249.

    CAS  Google Scholar 

  25. Apte, S.K. and Bhagwat, A.A., Salinity-stress-induced proteins in two nitrogen-fixing Anabaena strains differentially tolerant to salt, J. Bacteriol., 1989, vol. 171, pp. 909–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Close, T.J. and Lammers, P.J., An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins, Plant Physiol., 1993, vol. 101, pp. 773–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruibal, C., Salamó, I.P., Carballo, V., Castro, A., Bentancor, M., Borsani, O., Szabados, L., and Vidal, S., Differential contribution of individual dehydrin genes from Physcomitrella patens to salt and osmotic stress tolerance, Plant Sci., 2012, vol. 190, pp. 89–102.

    Article  CAS  PubMed  Google Scholar 

  28. Okuma, E., Soeda, K., Tada, M., and Murata, Y., Exogenous proline mitigates the inhibition of growth of Nicotiana tabacum cultured cell under saline conditions, Soil Sci. Plant Nutr., 2000, vol. 46, pp. 257–263.

    Article  CAS  Google Scholar 

  29. Chris, A., Zeeshan, M., Abrahama, G., and Prasad, S.M., Proline accumulation in Cylindrospermum sp., Environ. Exp. Bot., 2006, vol. 57, pp. 154–159.

    Article  CAS  Google Scholar 

  30. Khedr, A.H.A., Abbas, M.A., Wahid, A.A.A., Quick, W.P., and Abogadallah, G.M., Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress, J. Exp. Bot., 2003, vol. 392, pp. 2553–2562.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farooqui.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamim, A., Farooqui, A., Siddiqui, M.H. et al. Salinity–induced modulations in the protective defense system and programmed cell death in Nostoc muscorum . Russ J Plant Physiol 64, 861–868 (2017). https://doi.org/10.1134/S1021443717060097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717060097

Keywords

Navigation