Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 869–875 | Cite as

Response of Triticum aestivum to boron stress

Research Papers


Despite the demonstration that proline accumulation and gene expression of Δ1-pyrroline-5-carboxylate synthase (p5cS) increased under osmotic stress, the impact of excess boron on proline metabolism is not well known. Therefore, we investigated the effect of different boron concentrations (10, 50, 70, 140 and 200 ppm) on seedlings root growth, lipid peroxidation rate, antioxidant enzyme activity (glutathione reductase (GR), ascorbate peroxidase (APX), catalase (CAT)), proline accumulation and transcription level of p5cS gene in Triticum aestivum L. AK-702. It was observed that seed germination and root growth in T. aestivum decreased depending on the concentration of boron. Our results indicated that boron toxicity induced lipid peroxidation and decreased GR activity under a high concentration of boron. However, the APX activity did not significantly change under high concentrations of boron (70, 140 and 200 ppm), while it increased under the lower levels of boron (10 and 50 ppm). In addition, excess boron enhanced CAT activity in the 200 ppm boron treated groups. Proline accumulation increased 2.25 and 1.45 fold in the 140 and 200 ppm boron applications. In addition, analyses of the mRNA transcription level using the semi-quantitative RTPCR results showed that excess boron increased the p5cS mRNA transcript levels and showed a positive correlation of these levels with proline accumulation in T. aestivum roots.


Triticum aestivum boron proline p5cS gene 



ascorbate peroxidase




glutathione reductase






pyrroline-5-carboxylate synthase


superoxide dismutase


thiobarbituric acid reactive substances


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zohary, D., Hopf, M., and Weiss, E., Domestication of Plants in the Old World, Oxford: Clarendon, 2012.CrossRefGoogle Scholar
  2. 2.
    Erekul, O., Kautz, T., Ellmer, F., and Turgu, I., Yield and bread-making quality of different wheat (Triticum aestivum L.) genotypes grown in Western Turkey, Arch. Agron. Soil Sci., 2009, vol. 55, pp. 169–182.CrossRefGoogle Scholar
  3. 3.
    Eraslan, F., Inal, A., Savasturk, O., and Gunes, A., Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity, Sci. Hort., 2007, vol. 114, pp. 5–10.CrossRefGoogle Scholar
  4. 4.
    Karabal, E., Yücel, M., and Öktem, H.A., Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity, Plant Sci., 2003, vol. 164, pp. 925–933.CrossRefGoogle Scholar
  5. 5.
    Reid, R., Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley, Plant Cell Physiol., 2007, vol. 48, pp. 1673–1678.CrossRefPubMedGoogle Scholar
  6. 6.
    Foyer, C.H. and Noctor, G., Redox sensing and signaling associated with reactive oxygen in chloroplast, peroxisomes and mitochondria, Physiol. Plant., 2003, vol. 119, pp. 355–364.CrossRefGoogle Scholar
  7. 7.
    Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.CrossRefPubMedGoogle Scholar
  8. 8.
    Ruiz, J.M., Rivero, R.M., and Romero, L., Preliminary studies on the involment of biosynthesis of cysteine and glutathione in the resistance to boron toxicity in sunflower plants, Plant Sci., 2003, vol. 165, pp. 811–817.CrossRefGoogle Scholar
  9. 9.
    Cervilla, L.M., Blasco, B., Rios, J.J., Romero, L., and Ruiz, J.M., Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity, Ann. Bot., 2007, vol. 100, pp. 747–756.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gunes, A., Soylemezoglu, G., Inal, A., Bagci, E.G., Coban, S., and Sahin, O., Antioxidant and stomatal responses of grapevine (Vitis vinifera L.) to boron toxicity, Sci. Hort., 2006, vol. 110, pp. 279–284.CrossRefGoogle Scholar
  11. 11.
    Kishor, B.P.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S., Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants, Plant Physiol., 1995, vol. 108, pp. 1387–1394.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mehta, S.K. and Gaur, J.P., Heavy-metal-induced proline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris, New Phytol., 1999, vol. 143, pp. 253–259.CrossRefGoogle Scholar
  13. 13.
    Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y., and Shinozaki, K., Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress, Plant J., 1995, vol. 7, pp. 751–760.CrossRefPubMedGoogle Scholar
  14. 14.
    Delauney, A.J. and Verma, D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J., 1993, vol. 4, pp. 215–223.CrossRefGoogle Scholar
  15. 15.
    Hu, C.C.A., Delauney, A.J., and Verma, D.P.S. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 9354–9358.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hong, Z., Lakkineni, K., Zhang, Z., and Verma, D.P.S., Removal of feedback inhibition (Δ1-pyrroline-5-carboxylate synthetase) results in increased proline accumulation and protection of plants from osmotic stress, Plant Physiol., 2000, vol. 122, pp. 1129–1136.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplast: 1. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.CrossRefPubMedGoogle Scholar
  18. 18.
    Bates, L.S., Waldren, R.P., and Tear, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  19. 19.
    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of the protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.CrossRefPubMedGoogle Scholar
  20. 20.
    Bergmeyer, N., Methoden der enzymatischen Analyse, Berlin: Akademie Verlag, 1970, vol. 1, pp. 636–664.Google Scholar
  21. 21.
    Nakano, Y. and Asada, K., Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts, Plant Cell Physiol., 1981, vol. 22, pp. 867–880.Google Scholar
  22. 22.
    Yɩlmaz, G. and Leblebici, S., Farklɩ konsantrasyonlardaki borik asidin bazɩ Carthamus tinctorius L. (Compositae) çesitlerinin tohum çimlenmesi üzerine etkileri, The 19th Ulusal Biyoloji Kongresi Özet Kitapçigɩ (Trabzon, Haziran 23–27, 2008), Trabzon: Karadeniz Teknik Üniv., 2008, p.385.Google Scholar
  23. 23.
    Turton, T.E., Dawes, I.W., and Grant, C.M., Saccharomyces cerevisiae exhibits a yAP-1 mediated adaptative response to malondialdehyde, J. Bacteriol., 1997, vol. 179, pp. 1096–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brown, P.H., Bellaloni, N., Wimmer, M.A., Bassil, E.S., Ruiz, J., Hu, H., Pfeffer, H., Dannel, F., and Römheld, V., Boron in plant biology, Plant Biol., 2002, vol. 4, pp. 205–223.CrossRefGoogle Scholar
  25. 25.
    Molassiotis, A., Sotiropoulos, T., Tanou, G., Diamantidis, G., and Therios, I., Boron-induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh), Environ. Exp. Bot., 2006, vol. 56, pp. 54–62.CrossRefGoogle Scholar
  26. 26.
    Noctor, G. and Foyer, C.H., Ascorbate and glutathione: keeping active oxygen under control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, pp. 249–279.CrossRefPubMedGoogle Scholar
  27. 27.
    Hien, D.T., Jacobs, M., Angenon, G., Hermans, C., Thu, T.T., Son, L.V., and Roosens, N.H., Proline accumulation and Δ1-pyrroline-5-carboxylate synthetase gene properties in three rice cultivars differing in salinity and drought tolerance, Plant Sci., 2003, vol. 165, pp. 1059–1068.CrossRefGoogle Scholar
  28. 28.
    Bhaskaran, S., Smith, R.H., and Newton, R.J., Physiological changes in cultured sorghum cells in response to induced water stress: I. Free proline, Plant Physiol., 1970, vol. 79, pp. 266–269.CrossRefGoogle Scholar
  29. 29.
    Lutts, S., Kinet, J.M., and Bouharmont, J., Effects of various salts and mannitol on ion and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) callus cultures, J. Plant Physiol., 1996, vol. 149, pp. 186–195.CrossRefGoogle Scholar
  30. 30.
    Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., and Jaoua, S., Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants, Plant Sci., 2005, vol. 169, pp. 746–752.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Department of Horticulture Plants, Faculty of Agriculture and Natural SciencesBilecik SE. UniversityBilecikTurkey
  2. 2.Department of Molecular Biology and Genetic, Faculty of Science and LettersBilecik SE. UniversityBilecikTurkey
  3. 3.Biotechnology Application and Research CenterBilecik S. E. UniversityBilecikTurkey

Personalised recommendations