Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 850–860 | Cite as

AlGLY I gene implicated in salt stress response from halophyte Aeluropus littoralis

  • S. Faraji
  • H. Najafi-Zarrini
  • S. H. Hashemi-Petroudi
  • G. A. Ranjbar
Research Papers
  • 19 Downloads

Abstract

Aeluropus littoralis (Gouan) Parlatore is a rhizomatous perennial monocotyledonous halophyte that withstands environmental stresses. The role of the glyoxalase system, which plays an important role in carbohydrate metabolic process and compatible solutes production, in salt tolerance of A. littoralis was proved to be extremely momentous. Thus in the present study, a GLY I gene was isolated and sequenced from this plant (revealing the partial sequence of AlGLY I), and its expression profiling has been performed in response to salinity and recovery conditions, by fluorescent real-time PCR (qPCR). Experimental samples were prepared separately from shoot and root tissues after 600 mM NaCl treatment, as well as after stress removing. Maximum mRNA expression of GLY I, which was observed after 6 h salt stress in shoot tissue, was 5.9-fold higher compared to the control. Characterization of the partial sequence of AlGLY I gene, containing 896 bp, using publicly available databases demonstrated that the deduced transcripts, encoding 297 amino acids with a 32.5869 kD molecular mass including 5.19 isoelectric points, shared a high homology (~90%) to Oryza sativa GLY I protein. Setaria italica, Sorghum bicolor, Brachypodium distachyon, Triticum aestivum, and Hordeum vulgare with 86, 85, 84, 83 and 78%, respectively, also revealed high homology. The promoter analysis also showed the presence of various stress related CREs, which probably activate the AlGLY I gene transcription under abiotic stress conditions. These results suggested that AlGLY I may be a potentially useful candidate gene for engineering salinity tolerance in cultivated plants.

Keywords

Aeluropus littoralis bioinformatics analysis glyoxalase I gene 

Abbreviations

CREs

Cis-regulatory elements

GLY I

glyoxalase I

GSH

glutathione

MG

methylglyoxal

qPCR

quantitative real-time polymerase chain reaction

SLG

SD-lactoylglutathione

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11183_2017_6934_MOESM1_ESM.pdf (268 kb)
AlGLY I Gene Implicated in Salt Stress Response from Halophyte Aeluropus littoralis

References

  1. 1.
    Abiotic Stress in Plants—Mechanisms and Adaptations, Shanker, A.K. and Venkateswarlu, B., Eds., Rijeka: InTechOpen, 2011.Google Scholar
  2. 2.
    Tester, M. and Davenport, R., Na+ tolerance and Na+ transport in higher plants, Ann. Bot., 2003, vol. 91, pp. 503–527.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tavakkoli, E., Rengasamy, P., and McDonald, G.K., High concentrations of Na+ and Cl–ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress, J. Exp. Bot., 2010, vol. 61, pp. 4449–4459.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shinozaki, K. and Yamaguchi, K., Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways, Curr. Opin. Plant Biol., 2000, vol. 3, no. 3, pp. 217–223.CrossRefPubMedGoogle Scholar
  5. 5.
    Ahmad, P., Hakeem, K.R., Kumar, A., Ashraf, M., and Akram, N.A., Salt-induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.), Afr. J. Biotechnol., 2012, vol. 11, pp. 2694–2703.Google Scholar
  6. 6.
    Mustafiz, A., Ghosh, A., Tripathi, A.K., Kaur, C., Ganguly, A.K., Bhavesh, N.S., Tripathi, J.K., Pareek, A., Sopory, S.K., and Singla-Pareek, S.L., A unique Ni2+ dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response, Plant J., 2014, vol. 78, no. 6, pp. 951–963.CrossRefPubMedGoogle Scholar
  7. 7.
    Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., and Sopory, S.K., Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II, Transgenic Res., 2007, vol. 17, no. 2, pp. 171–180.CrossRefPubMedGoogle Scholar
  8. 8.
    Thornalley, P.J., Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation, Biochem. Soc. Trans., 2003, vol. 31, pp. 1343–1348.Google Scholar
  9. 9.
    Barhoumi, Z., Djebali, W., Abdelly, C., Chaïbi, W., and Smaoui, A., Ultrastructure of Aeluropus littoralis leaf salt glands under NaCl stress, Protoplasma, 2008, vol. 233, pp. 195–202.CrossRefPubMedGoogle Scholar
  10. 10.
    Gulzar, S., Khan, M.A., and Ungar, I.A., Effects of salinity on growth, ionic content and plant-water status of Aeluropus lagopoides, Commun. Soil Sci. Plant Anal., 2003, vol. 34, pp. 1657–1668.CrossRefGoogle Scholar
  11. 11.
    Zouari, N., Saad, R.B., Legavre, T., Azaza, J., Sabau, X., Jaoua, M., Masmoudi, K., and Hassairi, A., Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis, Gene, 2007, vol. 404, pp. 61–69.CrossRefPubMedGoogle Scholar
  12. 12.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bio-assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, no. 3, pp. 473–497.CrossRefGoogle Scholar
  13. 13.
    Stepinski, D., Nucleolin level in plant root meristematic cells under chilling stress and recovery, Micron, 2012, vol. 43, pp. 870–875.CrossRefPubMedGoogle Scholar
  14. 14.
    Hall, T., BioEdit: an important software for molecular biology, GERF Bull. Biosci., 2011, vol. 2, pp. 60–61.Google Scholar
  15. 15.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., Basic local alignment search tool, J. Mol. Biol., 1990, vol. 215, pp. 403–410.CrossRefPubMedGoogle Scholar
  16. 16.
    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., and Bairoch, A., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res., 2003, vol. 31, pp. 3784–3788.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., and Thompson, J.D., Multiple sequence alignment with the Clustal series of programs, Nucleic Acids Res., 2003, vol. 31, pp. 3497–3500.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., MEGA6: Molecular Evolutionary Genetics Analysis version 6.0., Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., and Bairoch, A., Protein identification and analysis tools on the ExPASy server, in The Proteomics Protocols Handbook, Walker, J.M., Ed., New York: Humana Press, 2005, pp. 571–607.CrossRefGoogle Scholar
  20. 20.
    Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., and Lopez, R., InterProScan: protein domains identifier, Nucleic Acids Res., 2005, vol. 33, pp. W116–W120.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sigrist, C.J.A., Cerutti, L., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., and Hulo, N., PROSITE: a protein domain database for functional characterization and annotation, Nucleic Acids Res., 2010, vol. 38, pp. D161–D166.CrossRefPubMedGoogle Scholar
  22. 22.
    Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., Putnam, N., and Rokhsar, D.S., Phytozome: a comparative platform for green plant genomics, Nucleic Acids Res., 2012, vol. 40, pp. D1178–D1186.CrossRefPubMedGoogle Scholar
  23. 23.
    Magali, L., Patrice, D., Ger, T., Kathleen, M., Yves,M., Yves, V.P., Pierre, R., and Stephane, R., PlantCARE: a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences, Nucleic Acids Res., 2002, vol. 30, pp. 325–327.CrossRefGoogle Scholar
  24. 24.
    Schmittgen, T.D. and Livak, K.J., Analyzing Real-Time PCR data by the comparative CT method, Nat. Protoc., 2008, vol. 3, pp. 1101–1108.CrossRefPubMedGoogle Scholar
  25. 25.
    Kato, N., Akai, M., Zulkifli, L., Matsuda, N., Kato, Y., Goshima, S., Hazama, A., Yamagami, M., Guy, R.H., and Uozumi, N., Role of positively charged amino acids in the M2D transmembrane helix of Ktr/Trk/HKT type cation transporters, Channels, 2007, vol. 1, no. 3, pp. 161–171.CrossRefPubMedGoogle Scholar
  26. 26.
    Rawlings, N.D., Morton, F.R., and Barrett, A.J., MEROPS: the peptidase database, Nucleic Acids Res., 2006, vol. 34, pp. D270–D272.CrossRefPubMedGoogle Scholar
  27. 27.
    Marchler, B.A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., Marchler, G.H., Song, J.S., Thanki, N., et al., CDD: NCBI’s conserved domain database, Nucleic Acids Res., 2015, vol. 43, pp. D222–D226.CrossRefPubMedGoogle Scholar
  28. 28.
    Saad, R.B., Zouari, N., Ramdhan, W.B., Azaza, J., Meynard, D., Guiderdoni, E., and Hassairi, A., Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zincfinger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis, Plant Mol. Biol., 2010, vol. 72, pp. 171–190.CrossRefPubMedGoogle Scholar
  29. 29.
    Sun, W., Xu, X., Zhu, H., Liu, A., Liu, L., Li, J., and Hua, X., Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar, Plant Cell Physiol., 2010, vol. 51, pp. 997–1006.CrossRefPubMedGoogle Scholar
  30. 30.
    Veena, V.S., Reddy, S.K., and Sopory, S.K., Glyoxalase I from Brassica juncea: molecular cloning, regulation and its over-expression confer tolerance in transgenic tobacco under stress, Plant J., 1999, vol. 17, pp. 385–395.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. Faraji
    • 1
  • H. Najafi-Zarrini
    • 1
  • S. H. Hashemi-Petroudi
    • 2
  • G. A. Ranjbar
    • 1
  1. 1.Department of Plant BreedingSari Agricultural Sciences and Natural Resources University (SANRU)SariIran
  2. 2.Genetics and Agricultural Biotechnology Institute of TabarestanSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations