Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 795–807 | Cite as

Suspension-cultured plant cells as a platform for obtaining recombinant proteins



Production of recombinant proteins in suspension cultures of genetically modified plant cells is a promising and rapidly developing area of plant biotechnology. In the present review article, advantages related to using plant systems for expression of recombinant proteins are considered. Here, the main focus is covering the literature on optimization of cultivation conditions of suspension-cultured plant cells to obtain a maximal yield of target proteins. In particular, certain examples of successful use of such cells to produce pharmaceuticals were described.


transgenic plants suspension cultures expression systems recombinant proteins biopharmaceuticals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Global Market Study on Biopharmaceuticals: Asia to Witness Highest Growth by 2020, New York: Persistence market research, 2015. http://www.persistencemarketresearch. com/market-research/biopharmaceutical-market. aspGoogle Scholar
  2. 2.
    Twyman, R.M., Stoger, E., Schillberg, S., Christou, P., and Fischer, R., Molecular farming in plants: host systems and expression technology, Trends Biotechnol., 2003, vol. 21, pp. 570–578.CrossRefPubMedGoogle Scholar
  3. 3.
    Gomord, V. and Faye, L., Posttranslational modification of therapeutic proteins in plants, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 171–181.CrossRefPubMedGoogle Scholar
  4. 4.
    Nagels, B., Weterings, K., Callewaert, N., and van Damme, E.J.M., Production of plant made pharmaceuticals: from plant host to functional protein, Crit. Rev. Plant Sci., 2012, vol. 31, pp. 148–180.CrossRefGoogle Scholar
  5. 5.
    Schiermeyer, A. and Schillberg, S., Plant molecular pharming—pharmaceuticals for human health, in Encyclopedia of Sustainability Science and Technology, Meyers, R.A., Ed., New York: Springer-Verlag, 2012, pp. 8126–8141.Google Scholar
  6. 6.
    Huang, T.K. and McDonald, K.A., Bioreactor engineering for recombinant protein production in plant cell suspension cultures, Biochem. Eng. J., 2009, vol. 45, pp. 168–184.CrossRefGoogle Scholar
  7. 7.
    Gleba, Y., Klimyuk, V., and Marillonnet, S., Viral vectors for the expression of proteins in plants, Curr. Opin. Biotechnol., 2007, vol. 18, pp. 134–141.CrossRefPubMedGoogle Scholar
  8. 8.
    Gelvin, S.B., Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool, Microbiol. Mol. Biol. Rev., 2003, vol. 67, no. 1, pp. 16–37.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Rosales-Mendoza, S. and Tello-Olea, M.A., Carrot cells: a pioneering platform for biopharmaceuticals production, Mol. Biotechnol., 2015, vol. 57, pp. 219–232.CrossRefPubMedGoogle Scholar
  10. 10.
    Daniell, H., Chebolu, S., Kumar, S., Singleton, M., and Falconer, R., Chloroplast-derived vaccine antigens and other therapeutic proteins, Vaccine, 2005, vol. 23, pp. 1779–1783.CrossRefPubMedGoogle Scholar
  11. 11.
    Gleba, Y., Klimyuk, V., and Marillonnet, S., Magnifection—a new platform for expressing recombinant vaccines in plants, Vaccine, 2005, vol. 23, pp. 2042–2048.CrossRefPubMedGoogle Scholar
  12. 12.
    Desai, P.N., Shrivastava, N., and Padh, H., Production of heterologous proteins in plants: strategies for optimal expression, Biotechnol. Adv., 2010, vol. 28, pp. 427–435.CrossRefPubMedGoogle Scholar
  13. 13.
    Woodard, S.L., Mayor, J.M., Bailey, M.R., Barker, D.K., Love, R.T., Lane, J.R., Delaney, D.E., McComas-Wagner, J.M., Mallubhotla, H.D., Hood, E.E., Dangott, L.J., Tichy, S.E., and Howard, J.A., Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants, Biotechnol. Appl. Biochem., 2003, vol. 38, pp. 123–130.PubMedGoogle Scholar
  14. 14.
    Howard, J.A., Commercialization of biopharmaceutical and bioindustrial proteins from plants, Crop Sci., 2005, vol. 45, pp. 468–472.CrossRefGoogle Scholar
  15. 15.
    Hollak, C.E., vom Dahl, S., Aerts, J.M., Belmatoug, N., Bembi, B., Cohen, Y., Collin-Histed, T., Deegan, P., van Dussen, L., Giraldo, P., Mengel, E., Michelakakis, H., Manuel, J., Hrebicek,M., Parini, R., et al., Force majeure: therapeutic measures in response to restricted supply of imiglucerase (Cerezyme) for patients with Gaucher disease, Blood Cells Mol. Dis., 2010, vol. 44, pp. 41–47.CrossRefPubMedGoogle Scholar
  16. 16.
    De Leede, L.G., Humphries, J.E., Bechet, A.C., van Hoogdalem, E.J., Verrijk, R., and Spencer, D.G., Novel controlled-release Lemna-derived IFN-alpha2b (Locteron): pharmacokinetics, pharmacodynamics, and tolerability in a phase I clinical trial, J. Interferon Cytokine Res., 2008, vol. 28, pp. 113–122.Google Scholar
  17. 17.
    McCormick, A.A., Reddy, S., Reinl, S.J., Cameron, T.I., Czerwinkski, D.K., Vojdani, F., Hanley, K.M., Garger, S.J., White, E.L., Novak, J., Barrett, J., Holtz, R.B., Tusé, D., and Levy, R., Plantproduced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 10131–10136.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fischer, R., Schillberg, S., Hellwig, S., Twyman, R.M., and Drossard, J., GMP issues for recombinant plantderived pharmaceutical proteins, Biotechnol. Adv., 2012, vol. 30, pp. 434–439.CrossRefPubMedGoogle Scholar
  19. 19.
    Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R., Plant cell cultures for the production of recombinant proteins, Nat. Biotechnol., 2004, vol. 22, pp. 1415–1422.CrossRefPubMedGoogle Scholar
  20. 20.
    Rybicki, E.P., Plant-made vaccines for humans and animals, Plant Biotechnol. J., 2010, vol. 8, pp. 620–637.CrossRefPubMedGoogle Scholar
  21. 21.
    Kaldis, A., Ahmad, A., Reid, A., McGarvey, B., Brandle, J., Ma, Sh., Jevnikar, A., Kohalmi, S.E., and Menassa, R., High-level production of human interleukin-10 fusions in tobacco cell suspension cultures, Plant Biotechnol. J., 2013, vol. 11, pp. 535–545.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Magnuson, N.S., Linzmaier, P.M., Reeves, R., An, G., Hayglass, K., and Lee, J.M., Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture, Protein Expr. Purif., 1998, vol. 13, pp. 45–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Firek, S., Draper, J., Owen, M.R.L., Gandecha, A., Cockburn, B., and Whitelam, G.C., Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures, Plant Mol. Biol., 1993, vol. 23, pp. 861–870.CrossRefPubMedGoogle Scholar
  24. 24.
    Schillberg, S., Raven, N., Fischer, R., Twyman, R., and Schiermeyer, A., Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures, Curr. Pharm. Des., 2013, vol. 19, pp. 5531–5542.CrossRefPubMedGoogle Scholar
  25. 25.
    Permyakova, N.V., Uvarova, E.A., and Deineko, E.V., State of research in the field of the creation of plant vac cines for veterinary use, Russ. J. Plant Physiol., 2015, vol. 62, no. 1, pp. 23–38.CrossRefGoogle Scholar
  26. 26.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassay with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  27. 27.
    Karwasara, V.S. and Dixit, V.K., Culture medium optimization for camptothecin production in cell suspension cultures of Nothapodytes nimmoniana (J. Grah.) Mabberley, Plant Biotechnol. Rep., 2013, vol. 7, no. 3, pp. 357–369.CrossRefGoogle Scholar
  28. 28.
    Steinitz, B., Sugar alcohols display nonosmotic roles in regulating morphogenesis and metabolism in plants that do not produce polyols as primary photosynthetic products, J. Plant Physiol., 1999, vol. 155, pp. 1–8.CrossRefGoogle Scholar
  29. 29.
    Kim, N.S., Yu, H.Y., Chung, N.D., Kwon, T.H., and Yang, MS., High-level production of recombinant trypsin in transgenic rice cell culture through utilization of an alternative carbon source and recycling system, Enzyme Microb. Technol., 2014, vol. 63, pp. 21–27.CrossRefPubMedGoogle Scholar
  30. 30.
    Ullisch, D.A., Müller, C.A., Maibaum, S., Kirchhoff, J., Schiermeyer, A., Schillberg, S., Roberts, J.L., Treffenfeldt, W., and Büchs, J., Comprehensive characterization of Nicotiana tabacum BY-2 cell growth leads to doubled GFP concentration by media optimization, J. Biosci. Bioeng., 2012, vol. 113, pp. 242–248.CrossRefPubMedGoogle Scholar
  31. 31.
    Vasilev, N., Gromping, U., Lipperts, A., Raven, N., Fischer, R., and Schillberg, S., Optimization of BY-2 cell suspension culture medium for the production of a human antibody using a combination of fractional factorial designs and the response surface method, Plant Biotechnol. J., 2013, vol. 11, pp. 867–874.CrossRefPubMedGoogle Scholar
  32. 32.
    Lee, J.H., Kim, N.S., Kwon, T.H., and Yang, M.S., Effects of osmotic pressure on production of recombinant human granulocyte-macrophage colony stimulating factor in plant cell suspension culture, Enzyme Microb. Technol., 2002, vol. 30, no. 6, pp. 768–773.CrossRefGoogle Scholar
  33. 33.
    Glick, B.R. and Pasternak, J.J., Molecular Biotechnology, Washington: ASM Press, 2003.Google Scholar
  34. 34.
    Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J.B., Mourrain, P., Palauqui, J.C., and Vernhettes, S., Transgene-induced gene silencing in plants, Plant J., 1998, vol. 16, pp. 651–659.CrossRefPubMedGoogle Scholar
  35. 35.
    Lessard, P.A., Kulaveerasingam, H., York, G.M., Strong, A., and Sinskey, A.J., Manipulating gene expression for the metabolic engineering of plants, Metab. Eng., 2002, vol. 4, pp. 67–79.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang, T.K. and McDonald, K.A., Bioreactor engineering for recombinant protein production in plant cell suspension cultures, Biochem. Eng. J., 2009, vol. 45, pp. 168–184.CrossRefGoogle Scholar
  37. 37.
    Santos, R.B., Abranches, R., Fischer, R., Sack, M., and Holland, T., Putting the spotlight back on plant suspension cultures, Front. Plant Sci., 2016, vol. 7:297.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Grierson, C., Du, J.S., de Torres, Zabala, M., Beggs, K., Smith, C., Holdsworth, M., and Bevan, M., Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber gene, Plant J., 1994, vol. 5, pp. 815–826.CrossRefPubMedGoogle Scholar
  39. 39.
    Zourelidou, M., de Torres, Zabala, M., Smith, C., and Bevan, M.W., Storekeeper defines a new class of plantspecific DNA-binding proteins and is putative regulator of patatin expression, Plant J., 2002, vol. 30, pp. 489–497.CrossRefPubMedGoogle Scholar
  40. 40.
    Atanassova, R., Letterier, M., Gaillard, C., Agasse, A., Sagot, E., Coutos-Thevenot, P., and Delrot, S., Sugarregulated expression of a putative hexose transport gene in grape, Plant Physiol., 2003, vol. 131, pp. 326–334.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Terashima, M., Murai, Y., Kawamura, M., Nakanishi, S., Stoltz, T., Chen, L., Drohan, W., Rodriguez, R.L., and Katoh, S., Production of functional human a1-antitrypsin by plant cell culture, Appl. Microbiol. Biotechnol., 1999, vol. 52, pp. 516–523.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim, N.S., Yu, H.Y., Chung, N.D., Shin, Y.J., Kwon, T.H., and Yang, M.S., Production of functional recombinant bovine trypsin in transgenic rice cell suspension cultures, Protein Expr. Purif., 2011, vol. 76, pp. 121–126.CrossRefPubMedGoogle Scholar
  43. 43.
    Sasaki, K., Yuchi, O., Hiraga, S., Gotoh, Y., Seo, S., Mitsuhara, I., Ito, H., Matsui, H., and Ohashi, Y., Characterization of two rice peroxidase promoters that respond to blast fungus-infection, Mol. Genet. Genomics, 2007, vol. 278, pp. 709–722.CrossRefPubMedGoogle Scholar
  44. 44.
    Yevtushenko, D.P., Sidorov, V.A., Romero, R., Kay, W.W., and Misra, S., Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato, Plant Sci., 2004, vol. 167, pp. 715–724.CrossRefGoogle Scholar
  45. 45.
    Rushton, P.J., Reinstadler, A., Lipka, V., Lippok, B., and Somssich, I.E., Synthetic plant promoter containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling, Plant Cell, 2002, vol. 14, pp. 749–762.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Saidi, Y., Finka, A., Chakhporanian, M., Zrÿd, J.P., Schaefer, D.G., and Goloubinoff, P., Controlled expression of recombinant proteins in Physcomitrella patens by a conditional heat-shock promoter: a tool for plant research and biotechnology, Plant Mol. Biol., 2005, vol. 59, pp. 697–711.CrossRefPubMedGoogle Scholar
  47. 47.
    Sun, A.Q., Yi, S.Y., Yang, J.Y., Zhao, C.M., and Liu, J., Identification and characterization of a heatinducible ftsH gene from tomato (Lycopersicon esculentum Mill.), Plant Sci., 2006, vol. 170, pp. 551–562.CrossRefGoogle Scholar
  48. 48.
    Lin, H.H., Huang, L.F., Su, H.C., and Jeng, S.T., Effects of the multiple polyadenylation signal AAUAAA on mRNA 3'-end formation and gene expression, Planta, 2009, vol. 230, no. 4, pp. 699–712.CrossRefPubMedGoogle Scholar
  49. 49.
    Desai, P.N., Neeta, Sh., and Harish, P., Production of heterologous proteins in plants: strategies for optimal expression, Biotechnol. Adv., 2010, vol. 28, pp. 427–435.CrossRefPubMedGoogle Scholar
  50. 50.
    Vyacheslavova, A.O., Berdichevets, I.N., Tyurin, A.A., Shimshilashvili, Kh.R., Mustafaev, O.N., and Goldenkova-Pavlova, I.V., Expression of heterologous genes in plant systems: new possibilities, Russ. J. Genetics, 2012, vol. 48, no. 11, pp. 1067–1079.CrossRefGoogle Scholar
  51. 51.
    Sharp, J.M. and Doran, P.M., Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures, Biotechnol. Prog., 2001, vol. 17, pp. 979–992.CrossRefPubMedGoogle Scholar
  52. 52.
    Outchkourov, N.S., Rogelj, B., Strukelj, B., and Jongsma, M.A., Expression of sea anemone equistatin in potato. Effects of plant proteases on heterologous protein production, Plant Physiol., 2003, vol. 133, pp. 379–390.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wirth, S., Calamante, G., Mentaberry, A., Bussmann, L., Lattanzi, M., Barañao, L., and Bravo-Almonacid, F., Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems, Mol. Breed., 2004, vol. 13, no. 1, pp. 23–35.CrossRefGoogle Scholar
  54. 54.
    Shaaltiel, Y., Hashmueli, S., Bartfeld, D., Baum, G., Ratz, T., and Mizrachi, E., System and method for production of antibodies in plant cell culture, US Patent no. 8119406, 2012.Google Scholar
  55. 55.
    Kim, T.G., Lee, H.J., Jang, Y.S., Shin, Y.J., Kwon, T.H., and Yang, M.S., Co-expression of proteinase inhibitor enhances recombinant human granulocyte-macrophage colony stimulating factor production in transgenic rice cell suspension culture, Protein Expr. Purif., 2008, vol. 61, pp. 117–121.CrossRefPubMedGoogle Scholar
  56. 56.
    Niemer, M., Mehofer, U., Torres, Acosta, J.A., Verdianz, M., Henkel, T., Loos, A., Strasser, R., Maresch, D., Rademacher, T., Steinkellner, H., and Mach, L., The human anti-HIV antibodies 2F5, 2G12, and PG9 differ in their susceptibility to proteolytic degradation: down-regulation of endogenous serine and cysteine proteinase activities could improve antibody production in plant-based expression platforms, Biotechnol. J., 2014, vol. 9, pp. 493–500.PubMedGoogle Scholar
  57. 57.
    Kim, N.S., Kim, T.G., Kim, O.H., Ko, E.M., Jang, Y.S., Jung, E.S., Kwon, T.H., and Yang, M.S., Improvement of recombinant hGM-CSF production by suppression of cysteine proteinase gene expression using RNA interference in a transgenic rice culture, Plant Mol. Biol., 2008, vol. 68, pp. 263–275.CrossRefPubMedGoogle Scholar
  58. 58.
    Tsoi, B. and Doran, P., Effect of medium properties and additives on antibody stability and accumulation in suspended plant cell cultures, Biotechnol. Appl. Biochem., 2002, vol. 35, no. 3, pp. 171–180.CrossRefPubMedGoogle Scholar
  59. 59.
    Doran, P.M., Loss of secreted antibody from transgenic plant tissue cultures due to surface adsorption, J. Biotechnol., 2006, vol. 122, pp. 39–54.CrossRefPubMedGoogle Scholar
  60. 60.
    Calinski, A., Classen, B., Zoglauer, K., and Boehm, R., IgG stability in fresh and conditioned medium of tobacco (Nicotiana tabacum) and larch (Larix decidu) embryogenic suspension cultures, Biotechnol. Lett., 2009, vol. 31, pp. 771–778.CrossRefPubMedGoogle Scholar
  61. 61.
    Gouda, M.D., Thakur, M.S., and Karanth, N.G., Stability studies on immobilized glucose oxidase using an amperometric biosensor—effect of protein based stabilizing agents, Electroanalysis, 2001, vol. 13, pp. 849–855.CrossRefGoogle Scholar
  62. 62.
    Lee, J.H., Kim, N.S., Kwon, T.H., Jang, Y.S., and Yang, M.S., Increased production of human granulocyte-macrophage colony stimulating factor (hGMCSF) by the addition of stabilizing polymer in plant suspension cultures, J. Biotechnol., 2002, vol. 96, pp. 205–211.CrossRefPubMedGoogle Scholar
  63. 63.
    Nakanishi, K., Sakiyama, T., and Imamura, K., On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon, J. Biosci. Bioeng., 2001, vol. 91, pp. 233–244.PubMedGoogle Scholar
  64. 64.
    Imamura, K., Shimomura, M., Nagai, S., Akamatsu, M., and Nakanish, K., Adsorption characteristics of various proteins to a titanium surface, J. Biosci. Bioeng., 2008, vol. 106, pp. 273–278.CrossRefPubMedGoogle Scholar
  65. 65.
    Sedov, K.A., Fomenkov, A.A., Solov’eva, A.I., Nosov, A.V., and Dolgikh, Yu.I., The level of genetic variability of cells in prolonged suspension culture of Arabidopsis thaliana, Biol. Bull. (Moscow), 2014, vol. 41, no. 6, pp. 493–499.CrossRefGoogle Scholar
  66. 66.
    Joersbo, M., Advances in the selection of transgenic plants using non-antibiotic marker genes, Physiol. Plant., 2001, vol. 111, no. 3, pp. 269–272.CrossRefPubMedGoogle Scholar
  67. 67.
    Wang, A.S., Evans, R.A., Altendorf, P.R., Hanten, J.A., Doyle, M.C., and Rosichan, J.L., A mannose selection system for production of fertile transgenic maize plants from protoplasts, Plant Cell Rep., 2000, vol. 19, pp. 654–660.CrossRefGoogle Scholar
  68. 68.
    Kirchhoff, J., Raven, N., Boes, A., Roberts, J.L., Russell, S., Treffenfeldt, W., Fischer, R., Schinkel, H., Schiermeyer, A., and Schillberg, S., Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting, Plant Biotechnol. J., 2012, vol. 10, pp. 936–944.CrossRefPubMedGoogle Scholar
  69. 69.
    Bortesi, L. and Fischer, R., The CRISPR/Cas9 system for plant genome editing and beyond, Biotechnol. Adv., 2015, vol. 33, pp. 41–52.CrossRefPubMedGoogle Scholar
  70. 70.
    Nemudryi, A.A., Valetdinova, K.R., Medvedev, S.P., and Zakiyan, S.M., TALEN and CRISPR/Cas genome editing systems: tools of discovery, Acta Nat., 2014, vol. 6, no. 3, pp. 19–40.Google Scholar
  71. 71.
    James, E. and Lee, J., Loss and recovery of protein productivity in genetically modified plant cell lines, Plant Cell Rep., 2006, vol. 25, no. 7, pp. 723–727.CrossRefPubMedGoogle Scholar
  72. 72.
    Oey, M., Lohse, M., Scharff, L.B., Kreikemeyer, B., and Bock, R., Plastid production of protein antibiotics against pneumonia via a new strategy for high-level expression of antimicrobial proteins, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, no. 16, pp. 6579–6584.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Ruhlman, T., Ahangari, R., Devine, A., Samsam, M., and Daniell, H., Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplasts—oral administration protects against development of insulitis in non-obese diabetic mice, Plant Biotechnol. J., 2007, vol. 5, pp. 495–510.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Scholtz, O., Thiel, A., and Hillen, W., Quantitative analysis of gene expression with an improved green fluorescent protein, Eur. J. Biochem., 2000, vol. 267, no. 6, pp. 1565–1570.CrossRefGoogle Scholar
  75. 75.
    Tregoning, J.S., Clare, S., Bowe, F., Edwards, L., Fairweather, N., Qazi, O., Nixon, P.J., Maliga, P., Dougan, G., and Hussell, T., Protection against tetanus toxin using a plant-based vaccine, Eur. J. Immunol., 2005, vol. 35, pp. 1320–1326.CrossRefPubMedGoogle Scholar
  76. 76.
    Michoux, F., Ahmad, N., Hennig, A., Nixon, P.J., and Warzecha, H., Production of leafy biomass using temporary immersion bioreactors: an alternative platform to express proteins in transplastomic plants with drastic phenotypes, Planta, 2013, vol. 237, pp. 903–908.CrossRefPubMedGoogle Scholar
  77. 77.
    Hampp, C., Richter, A., Osorio, S., Zellnig, G., Sinha, A.K., Jammer, A., Fernie, A.R., Grimm, B., and Roitsch, T., Establishment of a photoautotrophic cell suspension culture of Arabidopsis thaliana for photosynthetic, metabolic, and signaling studies, Mol. Plant, 2012, vol. 5, no. 2, pp. 524–527.PubMedGoogle Scholar
  78. 78.
    Hellwig, S., Drossard, J., Twyman, R.M., and Fischer, R., Plant cell cultures for the production of recombinant proteins, Nat. Biotechnol., 2004, vol. 22, pp. 1415–1422.CrossRefPubMedGoogle Scholar
  79. 79.
    Torres, E., Vaquero, C., Nicholson, L., Sack, M., Stoger, E., and Drossard, J., Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies, Transgenic Res., 1999, vol. 8, pp. 441–449.CrossRefPubMedGoogle Scholar
  80. 80.
    Smith, M.L., Mason, H.S., and Shuler, M.L., Hepatitis B surface antigen (HBsAg) expression in plant cell culture: kinetics of antigen accumulation in batch culture and its intracellular form, Biotechnol. Bioeng., 2002, vol. 80, pp. 812–822.CrossRefPubMedGoogle Scholar
  81. 81.
    Kwon, T.H., Kim, Y.S., Lee, J.H., and Yang, M.S., Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures, Biotechnol. Lett., 2003, vol. 25, pp. 1571–1574.CrossRefPubMedGoogle Scholar
  82. 82.
    Muynck, B., de Navarre, C., and Boutry, M., Production of antibodies in plants: status after twenty years, Plant Biotechnol. J., 2010, vol. 8, pp. 529–563.CrossRefPubMedGoogle Scholar
  83. 83.
    Hiatt, A., Cafferkey, R., and Bowdish, K., Production of antibodies in transgenic plants, Nature, 1989, vol. 342, pp. 76–78.CrossRefPubMedGoogle Scholar
  84. 84.
    Larrick, J.W., Yu, L., Naftzger, C., Jaiswal, S., and Wycoff, K., Production of secretory IgA antibodies in plants, Biomol. Eng., 2001, vol. 18, pp. 87–94.CrossRefPubMedGoogle Scholar
  85. 85.
    Yano, A., Maeda, F., and Takekoshi, M., Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen, J. Med. Virol., 2004, vol. 73, pp. 208–215.CrossRefPubMedGoogle Scholar
  86. 86.
    Girard, L.S., Fabis, M.J., Bastin, M., Courtois, D., Petiard, V., and Koprowski, H., Expression of a human anti-rabies virus monoclonal antibody in tobacco cell culture, Biochem. Biophys. Res. Commun., 2006, vol. 345, pp. 602–607.CrossRefPubMedGoogle Scholar
  87. 87.
    Holland, T., Sack, M., Rademacher, T., Schmale, K., Altmann, F., and Stadlmann, J., Optimal nitrogen supply as a key to increased and sustained production of a monoclonal full-size antibody in BY-2 suspension culture, Biotechnol. Bioeng., 2010, vol. 107, pp. 278–289.CrossRefPubMedGoogle Scholar
  88. 88.
    Semenyuk, E.G., Stremovskii, O.A., Orlova, I.V., Balandin, T.G., Nosov, A.M., Bur’yanov, Ya.I., Deev, S.M., and Petrov, R.V., Biosynthesis of the scFv antibody to human ferritin in plant and bacterial producers, Mol. Biol., 2003, vol. 37, no. 5, pp. 780–786.CrossRefGoogle Scholar
  89. 89.
    Sorrentino, A., Schillberg, S., Fischer, R., Rao, R., Porta, R., and Mariniello, L., Recombinant human tissue transglutaminase produced into tobacco suspension cell cultures is active and recognizes autoantibodies in the serum of coeliac patients, Int. J. Biochem. Cell Biol., 2005, vol. 37, pp. 842–851.CrossRefPubMedGoogle Scholar
  90. 90.
    Huang, J.M., Wu, L.Y., Yalda, D., Adkins, Y., Kelleher, S.L., and Crane, M., Expression of functional recombinant human lysozyme in transgenic rice cell culture, Transgenic Res., 2002, vol. 11, pp. 229–239.CrossRefPubMedGoogle Scholar
  91. 91.
    Tekoah, Y., Shulman, A., Kizhner, T., Ruderfer, I., Fux, L., Nataf, Y., Bartfeld, D., Ariel, T., Gingis-Velitski, S., Hanania, U., and Shaaltiel, Y., Large-scale production of pharmaceutical proteins in plant cell culture—the protalix experience, Plant Biotechnol. J., 2015, vol. 13, pp. 1199–1208.CrossRefPubMedGoogle Scholar
  92. 92.
    http://gmpnews.ruGoogle Scholar
  93. 93.
    Gutierrez-Ortega, A., Sandoval-Montes, C., Olivera-Flores, T.D., Santos-Argumedo, L., and Gomez-Lim, M.A., Expression of functional interleukin-12 from mouse in transgenic tomato plants, Transgenic Res., 2005, vol. 14, pp. 877–885.CrossRefPubMedGoogle Scholar
  94. 94.
    Ma, J.K., Drossard, J., Lewi, D., Altmann, F., Boyle, J., and Christou, P., Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants, Plant Biotechnol. J., 2015, vol. 13, pp. 1106–1120.CrossRefPubMedGoogle Scholar
  95. 95.
    Xu, J.F., Okada, S., Tan, L., Goodrum, K.J., Kopchick, J.J., and Kieliszewski, M.J., Human growth hormone expressed in tobacco cells as an arabinogalactanprotein fusion glycoprotein has a prolonged serum life, Transgenic Res., 2010, vol. 19, no. 5, pp. 849–867.CrossRefPubMedGoogle Scholar
  96. 96.
    Xu, J. and Zhang, N., On the way to commercializing plant cell culture platform for biopharmaceuticals: present status and prospect, Pharm. Bioprocess., 2014, vol. 2, no. 6, pp. 499–518.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Parsons, J., Wirth, S., Dominguez, M., Bravo-Almonacid, F., Giulietti, A.M., and Talou, J.R., Production of human epidermal growth factor (hEGF) by in vitro cultures of Nicotiana tabacum: effect of tissue differentiation and sodium nitroprusside addition, Int. J. Biotechnol. Biochem., 2010, vol. 6, pp. 131–138.Google Scholar
  98. 98.
    Mihaliak, C.A. and Webb, S.R., Plant-cell-produced vaccines for animal health, Feed Info News Service, 2005, vol. 9, pp. 1–4.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations