Russian Journal of Plant Physiology

, Volume 64, Issue 6, pp 822–832 | Cite as

Redox processes in biological systems



General principles of organization and distinctive features of the redox processes of biological systems are discussed. We paid special attention to the most examined parts of redox biology. As one of the approaches to the generalization of accumulated knowledge about redox processes, the so-called redox hypothesis of oxidative stress was examined. Extrapolation of this hypothesis on the processes taking place in plant cells, formulated on the basis of thiol-disulfide metabolism of animal cells, may help to systematize the available knowledge about redox processes in plants.


redox processes redox systems redox enzymes thiol-disulphide exchange oxygen-dependent processes redox hypothesis 



ascorbic acid


dehydroascorbic acid


glutathione reductase




reduced glutathione


oxidized glutathione


redox processes


redox reactions


reactive oxygen species


superoxide dismutase




thioredoxin reductase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zholnin, A.V., Obshchaya khimiya (General Chemistry), Moscow: GEOTAR-Media, 2012.Google Scholar
  2. 2.
    Ksenzhek, O.S. and Petrova, S.A., Elektrokhimicheskie svoistva obratimykh biologicheskikh redoks-sistem (Electrochemical Properties of Reversible Biological Redox Systems), Moscow: Nauka, 1986.Google Scholar
  3. 3.
    Martinovich, G.G. and Cherenkevich, S.N., Okislitel’no-vosstanovitel’nye protsessy v kletkakh (Redox Processes in Cells), Minsk: Bel. Gos. Univ., 2008.Google Scholar
  4. 4.
    Jones, D.P., Radical-free biology of oxidative stress, Am. J. Physiol. Cell Physiol., 2008, vol. 295, pp. 849–868.CrossRefGoogle Scholar
  5. 5.
    Cherenkevich, S.N., Martinovich, G.G., Martinovich, I.V., Gorudko, I.V., and Shamova, E.V., Redox regulation of cellular activity: concepts and mechanisms, Vest. Nats. Akad. Navuk Belarusi, Ser. Biyal. Navuk, 2013, no. 1, pp. 92–108.Google Scholar
  6. 6.
    Go, Y.M. and Jones, D.P., Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta, 2008, vol. 1780, pp. 1273–1290.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Severin, E.S., Biokhimiya (Biochemistry), Moscow: GEOTAR-Media, 2004.Google Scholar
  8. 8.
    Saab-Rincon, G. and Valderrama, B., Protein engineering of redox-active enzymes, Antioxid. Redox Signal., 2009, vol. 11, pp. 167–189.CrossRefPubMedGoogle Scholar
  9. 9.
    Kritsky, M.S. and Telegina, T.A., Coenzymes in evolution of the RNA world, Usp. Biol. Khim., 2004, vol. 44, pp. 341–361.Google Scholar
  10. 10.
    Kemp, M., Go, Y.M., and Jones, D.P., Non-equilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology, Free Radic. Biol. Med., 2008, vol. 44, pp. 921–937.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones, D.P., Redox theory of aging, Redox Biol., 2015, vol. 5, pp. 71–79.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jones, D.P., Redefining oxidative stress, Antioxid. Redox Signal., 2006, vol. 8, pp. 1865–1879.CrossRefPubMedGoogle Scholar
  13. 13.
    Chupakhina, G.N., Sistema askorbinovoi kisloty rastenii (System of Ascorbic Acid in Plants), Kaliningrad: Kalinin. Gos. Univ., 1997.Google Scholar
  14. 14.
    Bilan, D.S., Shokhina, A.G., Luk’yanov, S.A., and Belousov, V.V., Main cellular redox couples, Bioorg. Khim., 2015, vol. 41, pp. 385–402.PubMedGoogle Scholar
  15. 15.
    Go, Y.M., Duong, D.M., Peng, J., and Jones, D.P., Protein cysteines map to functional networks according to steady-state level of oxidation, J. Proteomics Bioinform., 2011, vol. 4, pp. 196–209.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Go, Y.M. and Jones, D.P., The redox proteome, J. Biol. Chem., 2013, vol. 288, pp. 26512–26520.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Conte, M.L. and Carroll, K.S., The redox biochemistry of protein sulfenylation and sulfinylation, J. Biol. Chem., 2013, vol. 288, pp. 26480–26488.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kalinina, E.V., Chernov, N.N., and Novichkova, M.D., Role of glutathione, glutathione transferase and glutoredoxin in the regulation of redoxdependent processes, Biochemistry (Moscow), 2014, vol. 79, no. 13, pp. 1562–1583.Google Scholar
  19. 19.
    Foyer, C.H., Lopez-Delgado, H., Dat, J.F., and Scott, I.M., Hydrogen peroxide-and glutathione-associated mechanisms of acclimatory stress tolerance and signaling, Physiol. Plant., 1997, vol. 100, pp. 241–254.CrossRefGoogle Scholar
  20. 20.
    Toledano, M.B., Kumar, C., Moan, N.L., Spector, D., and Tacnet, F., The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis, FEBS Lett., 2007, vol. 581, pp. 3598–3607.PubMedGoogle Scholar
  21. 21.
    Kolupaev, Yu.E., Reactive oxygen species in plants under action of stessors: formation and possible functions, Vestn. Khark. Nats. Agr. Univ., Ser. Biol., 2007, pp. 6–26.Google Scholar
  22. 22.
    Allen, R.G. and Balin, A.K., Oxidative influence on development and differentiation: an overview of a free radical theory of development, Free Radic. Biol. Med., 1989, vol. 6, pp. 631–661.CrossRefPubMedGoogle Scholar
  23. 23.
    Hitchler, M.J. and Domann, F.E., An epigenetic perspective on the free radical theory of development, Free Radic. Biol. Med., 2007, vol. 43, pp. 1023–1036.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.CrossRefGoogle Scholar
  25. 25.
    Sies, H., Physiological society symposium: impaired endothelial and smooth muscle cell function in oxidative stress oxidative stress: oxidants and antioxidants, Exp. Physiol., 1997, vol. 82, pp. 291–295.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, S. and Schopfer, P., Hydroxyl-radical production in physiological reactions—a novel function of peroxidase, Eur. J. Biochem., 1999, vol. 260, pp. 726–735.CrossRefPubMedGoogle Scholar
  27. 27.
    Noctor, G., Queval, G., Mhamdi, A., Chaouch, S., and Foyer, C.H., Glutathione, Arabidopsis Book, 2011, vol. 9, pp. 1–32.CrossRefGoogle Scholar
  28. 28.
    Foyer, C. and Noctor, G., Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context, Plant Cell Environ., 2005, vol. 28, pp. 1056–1071.CrossRefGoogle Scholar
  29. 29.
    Sies, H., Strategies of antioxidant defense, Eur. J. Biochem., 1993, vol. 215, pp. 213–219.CrossRefPubMedGoogle Scholar
  30. 30.
    Sies, H., Oxidative stress: a concept in redox biology and medicine, Redox Biol., 2015, vol. 4, pp. 180–183.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tkachuk, V.A., Tyurin-Kuz’min, P.A., Belousov, V.V., and Vorotnikov, A.V., Hydrogen peroxide as a new second messenger, Biochem. (Moscow), Suppl. Ser. A: Membr. Cell Biol., 2012, vol. 29, nos. 1–2, pp. 21–37.Google Scholar
  32. 32.
    López-Mirabal, H.R. and Winther, J.R., Redox characteristics of the eukaryotic cytosol, Biochim. Biophys. Acta, 2008, vol. 1783, pp. 629–640.CrossRefPubMedGoogle Scholar
  33. 33.
    Lyakhovich, V.V., Vavilin, V.A., Zenkov, N.K., and Menshchikova, E.B., Active defense under oxidative stress. The antioxidant responsive element, Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 962–975.CrossRefGoogle Scholar
  34. 34.
    Berczi, A. and Moller, I.M., Redox enzymes in the plant plasma membrane and their possible roles, Plant Cell Environ., 2000, vol. 23, pp. 1287–1302.CrossRefGoogle Scholar
  35. 35.
    Sin’kevich, M.S., Naraikina, N.V., and Trunova, T.I., Processes hindering activation of lipid peroxidation in cold-tolerant plants under hypothermia, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1020–1026.CrossRefGoogle Scholar
  36. 36.
    Wood, Z.A., Poole, L.B., and Karplus, P.A., Peroxiredoxin evolution and the regulation of hydrogen peroxide signaling, Science, 2003, vol. 300, pp. 650–653.CrossRefPubMedGoogle Scholar
  37. 37.
    Kalinina, E.V., Chernov, N.N., and Saprin, A.N., Involvement of thio-, peroxy-and glutaredoxins in cellular redox-dependent processes, Biochemistry (Moscow), 2008, vol. 73, no. 13, pp. 1493–1510.Google Scholar
  38. 38.
    Skulachev, V.P., Membrannye preobrazovateli energii. Biokhimiya membran (Membrane Energy Converters. Membrane Biochemistry), Moscow: Vysshaya Shkola, 1989.Google Scholar
  39. 39.
    Jones, O.T.G., Cytochrome P450 and herbicide resistance, in Herbicide Resistance in Weeds and Crops, Caseley, J.C., Cussans, G.W., and Atkin, R.K., Eds., Oxford: Butterworth-Heinemann, 1991, pp. 213–227.CrossRefGoogle Scholar
  40. 40.
    Yankovskii, O.Yu., Toksichnost’ kisloroda i biologicheskie sistemy (evolyutsionnye, ekologicheskie i mediko-biologicheskie aspekty) (Oxygen Toxicity and Biological Systems: Evolutionary, Ecological and Biomedical Aspects), St. Petersburg: Igra, 2000.Google Scholar
  41. 41.
    Rakhmankulova, Z.F., Respiratory supercomplexes of plant mitochondria: structure and possible functions, Russ. J. Plant Physiol., 2014, vol. 61, pp. 721–732.CrossRefGoogle Scholar
  42. 42.
    Grivennikova, V.G. and Vinogradov, A.D., Mitochondrial production of reactive oxygen species, Biochemistry (Moscow), 2013, vol. 78, pp. 1490–1511.CrossRefGoogle Scholar
  43. 43.
    Pang, C.H. and Wang, B.S., Role of ascorbate peroxidase and glutathione reductase in ascorbate–glutathione cycle and stress tolerance in plants, in Ascorbate-Glutathione Pathway and Stress Tolerance in Plants, Anjum, N.A., Chan, M.T., and Umar, S., Eds., Dordrecht: Springer, 2010, pp. 91–112.CrossRefGoogle Scholar
  44. 44.
    Pradedova, E.V., Isheeva, O.D., and Salyaev, R.K., Antioxidant defense enzymes in cell vacuoles of red beet roots, Russ. J. Plant Physiol., 2011, vol. 58, pp. 36–44.CrossRefGoogle Scholar
  45. 45.
    Chasov, A.V. and Minibaeva, F.V., Methodological approaches for studying apoplastic redox activity. 2. Regulation of peroxidase activity, Russ. J. Plant Physiol., 2014, vol. 61, pp. 626–633.CrossRefGoogle Scholar
  46. 46.
    Laws, E.A., Environmental Toxicology: Selected Entries from the Encyclopedia of Sustainability Science and Technology, New York: Springer-Verlag, 2012.Google Scholar
  47. 47.
    Burhans, W.C. and Heintz, N.H., The cell cycle is a redox cycle: linking phase-specific targets to cell fate, Free Radic. Biol. Med., 2009, vol. 47, pp. 1282–1293.CrossRefPubMedGoogle Scholar
  48. 48.
    Adimora, N.J., Jones, D.P., and Kemp, M.L., A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses, Antioxid. Redox Signal., 2010, vol. 13, pp. 731–743.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Forman, H.J., Fukuto, J.M., and Torres, M., Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers, Am. J. Physiol. Cell Physiol., 2004, vol. 287, pp. 246–256.CrossRefGoogle Scholar
  50. 50.
    Santos, C.X., Tanaka, L.Y., Wosniak, J., and Laurindo, F.R., Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase, Antioxid. Redox Signal., 2009, vol. 11, pp. 2409–2427.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • E. V. Pradedova
    • 1
  • O. D. Nimaeva
    • 1
  • R. K. Salyaev
    • 1
  1. 1.Siberian Institute of Plant Physiology and Biochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations