Skip to main content

Advertisement

Log in

Physiological and proteomic response of Limonium bicolor to salinity

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Medicinal halophyte Limonium bicolor (Bag.) Kuntze was treated with 200 mM NaCl, the physiological parameters including fresh weight, dry weight, salt gland number, MDA levels and root activity were investigated, comparative proteomic analyses of leaf and root were carried out using 2D-PAGE combined with MALDI-TOF/TOF-MS. The results showed that L. bicolor performed a positive effect on its growth under NaCl stress since increase in different extent of fr wt, dry wt, salt gland number, MDA level and SOD activity of leaves and roots, as well as root activity. More than 460 protein spots in leaves and 600 protein spots in roots were visualized and matched in 2D gels, the results of proteomic analyses showed that 45 proteins were identified in leaves and 49 proteins in roots to be differentially expressed. Based on their functions, these proteins were grouped into categories covering a wide range of molecular processes, including carbohydrate, energy, lipid, nucleotide and amino acid metabolism, glycan biosynthesis and metabolism, metabolism of cofactors and vitamins, biosynthesis of secondary metabolites, redox homeostasis, transcription, cytoskeleton and transport, as well as folding, sorting and degradation. The upregulating and downregulating of differentially- expressed proteins with different physiological function were also reflected in the physiological parameters. These results are helpful for further research work on salt response mechanisms and medicinal utilization of L. bicolor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y., Du, H., He, X., Huang, B., and Wang, Z., Identification of differentially expressed salt-responsive proteins in roots of two perennial grass species contrasting in salinity tolerance, J. Plant Physiol., 2012, vol. 169, pp. 117–126.

    Article  CAS  PubMed  Google Scholar 

  2. Kosová, K., Prášil, I.T., and Vitámvás, P., Protein contribution to plant salinity response and tolerance acquisition, Int. J. Mol. Sci., 2013, vol. 14, pp. 6757–6789.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feng, Z.T., Sun, Q.J., Deng, Y.Q., Sun, S.F., Zhang, J.G., and Wang, B.S., Study on pathway and characteristics of ion secretion of salt glands of Limonium bicolor, Acta Physiol. Plant., 2014, vol. 36, pp. 2729–2741.

    Article  CAS  Google Scholar 

  4. Yu, D.H., Effects of NaCl stress on the seed germination and seedling growth of Limonium bicolor, J. Huazhong Norm. Univ., Ser. Nat. Sci., 2008, vol. 42, pp. 435–439.

    CAS  Google Scholar 

  5. Tang, X.H. and Shen, M., Research advancement of the chemical components and pharmacological action for the plants of Limonium Mill., Lishizhen Med. Materia Medica Res., 2007, vol. 18, pp. 1874–1876.

    CAS  Google Scholar 

  6. He, C.X., Review on flavonoids and pharmaceutical action for the plant of Limonium Mill., North Hort., 2013, vol. 21, pp. 182–184.

    Google Scholar 

  7. Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R., and Lachaal, M., Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress, Acta Physiol. Plant., 2010, vol. 32, pp. 289–296.

    Article  CAS  Google Scholar 

  8. Wang, L.S., Ma, L., Wu, W.L., and Li, W.L., Research progress on salt-tolerance of Limonium Mill. resources, J. Northwest A and F Univ., Ser. Nat. Sci. Ed., 2014, vol. 42, pp. 176–183.

    Google Scholar 

  9. Chen, C.L., Measurement of plant root activity (TTC), in Principle and Technology of Plant Physiological and Biochemical Experiments, Li, H.S., Ed., Beijing: Higher Edu. Press, 2003, pp. 119–120.

    Google Scholar 

  10. Hilu, K.W. and Randall, J.L., Convenient method for studying grass leaf epidermis, Taxon, 1984, vol. 33, pp. 413–415.

    Article  Google Scholar 

  11. Wang, W., Vignani, R., Scali, M., and Cresti, M., A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis, Electrophoresis, 2006, vol. 27, pp. 2782–2786.

    Article  CAS  PubMed  Google Scholar 

  12. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  13. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250, Electrophoresis, 1988, vol. 9, pp. 255–262.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y., Ma, H., Liu, G., Zhang, D., Ban, Q., Zhang, G., Xu, C., and Yang, C., Generation and analysis of expressed sequence tags from a NaHCO3-treated Limonium bicolor cDNA library, Plant Physiol. Biochem., 2008, vol. 46, pp. 977–986.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, H., Zheng, B., Song, B., Wang, S., and Dai, S., Salt-responsive proteomics in plants, Acta Ecol. Sin., 2011, vol. 31, pp. 6936–6946.

    CAS  Google Scholar 

  16. Faghani, E., Gharechahi, J., Komatsu, S., Mirzaei, M., Khavarinejad, R.A., Najafi, F., Farsad, L.K., and Salekdeh, G.H., Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance, J. Proteomics, 2015, vol. 114, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  17. Rouhier, N. and Jacquot, J.P., Plant peroxiredoxins: alternative hydroperoxide scavenging enzymes, Photosynth. Res., 2002, vol. 74, pp. 259–268.

    Article  CAS  PubMed  Google Scholar 

  18. Yang, L., Ma, C., Wang, L., Chen, S., and Li, H., Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14, J. Plant Physiol., 2012, vol. 169, pp. 839–850.

    Article  CAS  PubMed  Google Scholar 

  19. Arosio, P. and Levi, S., Ferritin, iron homeostasis, and oxidative damage, Free Radic. Biol. Med., 2002, vol. 33, pp. 457–463.

    Article  CAS  PubMed  Google Scholar 

  20. Liska, A., Shevchenko, A., Pick, U., and Katz, A., Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics, Plant Physiol., 2004, vol. 136, pp. 2806–2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, L., Li, X., Zheng, W., Fu, Z., Li, W., Ma, L., Li, K., Sun, L., and Tian, J., Proteomics analysis of UV-irradiated Lonicera japonica Thunb. with bioactive metabolites enhancement, Proteomics, 2013, vol. 13, pp. 3508–3522.

    Article  CAS  PubMed  Google Scholar 

  22. Uematsu, K., Suzuki, N., Iwamae, T., Inui, M., and Yukawa, H., Expression of Arabidopsis plastidial phosphoglucomutase in tobacco stimulates photosynthetic carbon flow into starch synthesis, J. Plant Physiol., 2012, vol. 169, pp. 1454–1462.

    Article  CAS  PubMed  Google Scholar 

  23. Minárik, P., Tomásková, N., Kollárová, M., and Antalik, M., Malate dehydrogenases–structure and function, Gen. Physiol. Biophys., 2002, vol. 21, pp. 257–265.

    PubMed  Google Scholar 

  24. Rípodas, C., Via, V.D., Aguilar, O.M., Zanetti, M.E., and Blanco, F.A., Knock-down of a member of the isoflavone reductase gene family impairs plant growth and nodulation in Phaseolus vulgaris, Plant Physiol. Biochem., 2013, vol. 68, pp. 81–89.

    Article  PubMed  Google Scholar 

  25. Kim, Y.J., Zhang, D., and Yang, D.C., Biosynthesis and biotechnological production of ginsenosides, Biotechnol. Adv., 2015, vol. 33, pp. 717–735.

    Article  CAS  PubMed  Google Scholar 

  26. Chan, W.S., Abdullah, J.O., Namasivayam, P., and Mahmood, M., Molecular characterization of a new 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) transcript from Vanda Mimi Palmer, Sci. Hortic., 2009, vol. 121, pp. 378–382.

    Article  CAS  Google Scholar 

  27. Reddy, A.M., Redody, V.S., Scheffler, B.E., Wienand, U., and Reddy, A.R., Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential, Metab. Eng., 2007, vol. 9, pp. 95–111.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, W.Q., Moller, I.M., and Song, S.Q., Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance, J. Proteomics, 2012, vol. 77, pp. 68–86.

    Article  CAS  PubMed  Google Scholar 

  29. Yazaki, K., ABC transporters involved in the transport of plant secondary metabolites., FEBS Lett., 2006, vol. 580, pp. 1183–1191.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Li.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.S., Li, W.L., Qi, X.W. et al. Physiological and proteomic response of Limonium bicolor to salinity. Russ J Plant Physiol 64, 349–360 (2017). https://doi.org/10.1134/S1021443717030190

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030190

Keywords

Navigation