Skip to main content

MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature

Abstract

The miRNAs and their targets involved in senescence of strawberry fruit (Fragaria ananassa L. cv. Zhangji) were analyzed in the present study. In the previous work, three members of miR164 family, mdmmiR164d_ 1ss21AC, mdm-miR164e and mdm-miR164f_1ss21TA, and three of their targets, NAC domain transcriptional regulator superfamily protein, NAC domain containing protein 38 and NAC domain containing protein 87 had been identified by high-throughput sequencing and degradome analysis. In the process of fruit senescence from 0 to 48 h at 4°C storage, the relative levels of mdm-miR164e and mdmmiR164d_1ss21AC expression were significantly increased resulting in decreased expression of NAC genes, and delayed senescence of strawberry fruits. These results suggested that miR164 was involved in strawberry fruit senescence by negatively mediating the expression of NAC transcription factors.

This is a preview of subscription content, access via your institution.

Abbreviations

ATAF:

Arabidopsis transcription activation factor

CNR:

cannabinoid receptor

CUC:

cup-shaped cotyledon

MFE:

minimum free energy

NAC:

no apical meristem/ Arabidopsis transcription activation factor/Cup-shaped cotyledon

NAM:

no apical meristem

TCP:

TEOSINTE BRANCHED 1-CYCLOIDEA-PCF

References

  1. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 2004, vol. 116, pp. 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Cherian, S., Figueroa, C.R., and Nair, H., ‘Movers and shakers’ in the regulation of fruit ripening–a cross dissection of climacteric versus non-climacteric fruit, J. Exp. Bot., 2014, vol. 65, pp. 4705–4722.

    Article  CAS  PubMed  Google Scholar 

  3. Schommer, C., Palatnik, J.F., Aggarwal, P., Chetelat, A., Cubas, P., Farmer, E.E., Nath, U., and Weigel, D., Control of jasmonate biosynthesis and senescence by miR319 targets, PLoS Biol., 2008, vol. 6: e230.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H., Hwang, D., and Nam, H.G., Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis, Science, 2009, vol. 323, pp. 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  5. Dalmay, T., Short RNAs in tomato, J. Integr. Plant Biol., 2010, vol. 52, pp. 388–392.

    Article  CAS  PubMed  Google Scholar 

  6. Addo-Quaye, C., Eshoo, T.W., Bartel, D.P., and Axtell, M.J., Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome, Curr. Biol., 2008, vol. 18, pp. 758–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu, X.B., Yin, L.L., Ying, Q.C., Song, H.M., Xue, D.W., Lai, T.F., Xu, M.J., Shen, B., Wang, H.Z., and Shi, X.Q., High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa, PLoS One, 2013, vol. 8, pp. e70959.

    Article  Google Scholar 

  8. Xu, X.B., Ma, X.Y., Lei, H.H., Yin, L.L., Shi, X.Q., and Song, H.M., MicroRNAs play an important role in the regulation of strawberry fruit senescence in low temperature, Postharvest Biol. Technol., 2015, vol. 108, pp. 39–47.

    Article  CAS  Google Scholar 

  9. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–?CT method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  10. Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K., NAC transcription factors: structurally distinct, functionally diverse, Trends Plant Sci., 2005, vol. 1, pp. 79–87.

    Article  Google Scholar 

  11. Zhong, R., Lee, C., and Ye, Z.H., Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis, Mol. Plant, 2010, vol. 3, pp. 1087–1103.

    Article  CAS  PubMed  Google Scholar 

  12. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P., Prediction of plant microRNA targets, Cell, 2002, vol. 110, pp. 513–520.

    Article  CAS  PubMed  Google Scholar 

  13. Guo, Y., Cai, Z., and Gan, S., Transcriptome of Arabidopsis leaf senescence, Plant Cell Environ., 2004, vol. 27, pp. 521–549.

    Article  CAS  Google Scholar 

  14. Yoon, H.K., Kim, S.G., Kim, S.Y., and Park, C.M., Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis, Mol. Cells, 2008, vol. 25, pp. 438–445.

    CAS  PubMed  Google Scholar 

  15. Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., Mehrnia, M., Zanor, M.I., Köhler, B., and Mueller-Roeber, B., A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence, Plant J., 2010, vol. 62, pp. 250–264.

    Article  CAS  PubMed  Google Scholar 

  16. Guo, Y. and Gan, S., AtNAP, a NAC family transcription factor, has an important role in leaf senescence, Plant J., 2006, vol. 46, pp. 601–612.

    CAS  PubMed  Google Scholar 

  17. He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., and Chen, S.Y., AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development, Plant J., 2005, vol. 44, pp. 903–916.

    Article  CAS  PubMed  Google Scholar 

  18. Takada, S., Hibara, K., Ishida, T., and Tasaka, M., The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation, Development, 2001, vol. 128, pp. 1127–1135.

    CAS  PubMed  Google Scholar 

  19. Mallory, A.C., Dugas, D.V., Bartel, D.P., and Bartel, B., MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs, Curr. Biol., 2004, vol. 14, pp. 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  20. Laufs, P., Peaucelle, A., Morin, H., and Traas, J., MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems, Development, 2004, vol. 131, pp. 4311–4322.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lai, T., Song, H. et al. MiR164 is involved in delaying senescence of strawberry (Fragaria ananassa) fruit by negatively regulating NAC transcription factor genes under low temperature. Russ J Plant Physiol 64, 251–259 (2017). https://doi.org/10.1134/S102144371702008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371702008X

Keywords