Skip to main content

Growth of aerial roots with an extensive elongation zone by the example of a hemiepiphyte Monstera deliciosa


We investigated peculiarities of growth of aerial roots in a hemiepiphyte Monstera deliciosa. Aerial roots show low absolute and relative rates of growth and have an extensive elongation zone. In contrast to common roots, cell elongation in the elongation zone of aerial roots may last for 30 days and sometimes longer. The length of cortex cells increases in direct proportion to the distance from the root tip. This means that there is no drastic change in the relative rate of growth associated with transition to elongation characteristic of common roots. Distribution of growth over the elongation zone of aerial roots is irregular. Within the elongation zone, the cells of rhizodermis can divide, and divisions are distributed nonuniformly. The contact between neighboring growing polycytes (cell complexes) is presumably associated with their sliding against one another (intrusive growth). By the example of aerial roots of Monstera deliciosa, we showed a particular type of growth organization in the root with an extensive elongation zone differing from the growth of common roots and resembling the growth of leaves, stems, and fleshy fruit of dicotyledons.

This is a preview of subscription content, access via your institution.


  1. Went, F.A.F.C., Über Haft-und Naehrwurzeln bei Kletterpflanzen und Epiphyten, Ann. Jard. Bot. Buitenzorg, 1895, vol. 12, pp. 1–72.

    Google Scholar 

  2. Linsbauer, K., Über Wachstum und Geotropismus der Aroideen-Luftwurzeln, Flora Bot. Zeit., 1907, vol. 97, pp. 267–298.

    Google Scholar 

  3. Blaauw, A.H., Das Wachstum der Luftwurzeln einer Cissus-Art, Ann. Jard. Bot. Buitenzorg, 1912, vol. 26, pp. 266–293.

    Google Scholar 

  4. Benzing, D.H., Aerial roots and their environments, Plant Roots: The Hidden Half, Waisel, Y., Eshel, A., and Kafkafi, U., Eds., New York: Marcel Dekker, 1996, pp. 875–894.

  5. Es’kov, A.K., Epiphytic communities of arboreal formations in Southern Vietnam: an analysis of species composition and synusias structure in dependence on the extent of anthropogenic impact, Zh. Obshch. Biol., 2013, vol. 74, pp. 386–398.

    PubMed  Google Scholar 

  6. Es’kov, A.K. and Dubovikov, D.A., Community of myrmecophilous epiphytes of kerangas formation from Borneo Island, Byull. Mosk. O-va Ispyt. Prirod., Otd. Biol., 2015, vol. 120, pp. 60–69.

    Google Scholar 

  7. Bloch, R., Developmental potency, differentiation, and pattern in meristems of Monstera deliciosa, Am. J. Bot., 1944, vol. 42, pp. 168–198.

    Google Scholar 

  8. Bloch, R., Differentiation and pattern in Monstera deliciosa. The idioblastic development of the trichosclereids in the air root, Am. J. Bot., 1946, vol. 33, pp. 544–551.

    Article  Google Scholar 

  9. Sinnott, E.W. and Bloch, R., Comparative differentiation in the air roots of Monstera deliciosa, Am. J. Bot., 1946, vol. 33, pp. 587–590.

    Article  Google Scholar 

  10. Hinchee, M.A.W., Morphogenesis of aerial and subterranean roots of Monstera deliciosa, Bot. Gaz., 1981, vol. 142, no. 3. doi doi 10.1086/337234

  11. Hinchee, M.A.W., The quantitative distribution of trichosclereids and raphide crystal cells in Monstera deliciosa, Bot. Gaz., 1983, vol. 144, pp. 250–257.

    Google Scholar 

  12. Shirokova, N.P. and Ivanov, V.B., Hypocotyl growth in etiolated cucumber seedlings. 2. Cellular analysis of growth, Russ. J. Plant Physiol., 1997, vol. 44, pp. 679–685.

    CAS  Google Scholar 

  13. Biserova, N.M., Metody vizualizatsii biologicheskikh ul’trastruktur. Podgotovka biologicheskikh ob’ektov dlya izucheniya s pomoshch’yu elektronnykh i konfokal’nykh lazernykh mikroskopov. Prakticheskoe rukovodstvo dlya biologov (Methods for Visualizing Biological Ultrastructures. Preparation for the Study of Biological Objects Using Electronic and Laser Confocal Microscopes. A Practical Guide for Biologists), Moscow: KMK Sci. Press Ltd., 2013.

    Google Scholar 

  14. Barlow, P.W. and Lük, J., Rhythmic plant morphogenesis: recurrent patterns of idioblast cell production, Russ. J. Plant Physiol., 2008, vol. 55, pp. 149–167.

    CAS  Article  Google Scholar 

  15. Lodkina, M.M., The development of the embryo of European spindle tree Euonymus europaea L. during the period of seed stratification, Bot. Zh., 1966, vol. 51, pp. 649–659.

    Google Scholar 

  16. Kholodnyi, N.G., Alleged anomalies of root growth of white lupine, Izbrannye trudy (Selected Works), Kiev: Ukr. Akad. Nauk, 1956, vol. 1, pp. 216–219.

    Google Scholar 

  17. Ivanov, V.B., Kletochnye mekhanizmy rosta rastenii (Cellular Mechanisms of Plant Growth), Moscow: Nauka, 2011.

    Google Scholar 

  18. Ivanov, V.B., Proliferation in plant cells, Itogi Nauki Tekh., Ser.: Tsitol., 1987, vol. 5.

  19. Ivanov, V.B. and Dubrovsky, J.G., Longitudinal zonation pattern in plant roots: conflicts and solutions, Trends Plant Sci., 2013, vol. 18, pp. 237–243.

    CAS  Article  PubMed  Google Scholar 

  20. Ivanov, V.B., Kletochnye osnovy rosta rastenii (Cellular Foundations of Plant Growth), Moscow: Nauka, 1974.

    Google Scholar 

  21. Dello Ioio, R., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P., and Sabatini, S., Cytokinins determine Arabidopsis rootmeristem size by controlling cell differentiation, Curr. Biol., 2007, vol. 17, pp. 678–682.

    CAS  Article  PubMed  Google Scholar 

  22. Sinnott, E.W., Plant Morphogenesis, New York: McGraw-Hill, 1960.

    Book  Google Scholar 

  23. Eschrich, W., Phloem unloading in aerial roots of Monstera deliciosa, Planta, 1983, vol. 157, pp. 540–547.

    CAS  Article  PubMed  Google Scholar 

  24. Kravets, E.A., Berezhnaya, V.V., Sakada, V.I., Rashidov, N.M., and Grodzinsky, D.M., Structural architectonics of the root apical meristem in connection with a quantitative evaluation of its radiation damage, Cytol. Genet., 2012, no. 2, pp. 63–73.

    Article  Google Scholar 

  25. Snegireva, A.V., Ageeva, M.V., Amenitskii, S.I., Chernova, T.E., Ebskamp, M., and Gorshkova, T.A., Intrusive growth of sclerenchyma fibers, Russ. J. Plant Physiol., 2010, vol. 57, pp. 342–355.

    CAS  Article  Google Scholar 

  26. Gorshkova, T.A., Rastitel’naya kletochnaya stenka kak dinamichnaya sistema (The Plant Cell Wall Is a Dynamic System), Moscow: Nauka, 2007.

    Google Scholar 

  27. Gill, A.M. and Tomlinson, P.B., Studies on the growth of red mangrove (Rhizophora mangle L.). 2. Growth and differentiation of aerial roots, Biotropica, 1971, vol. 3, pp. 63–77.

    CAS  Article  Google Scholar 

  28. Gill, A.M. and Tomlinson, P.B., Studies on the growth of red mangrove (Rhizophora mangle L.). 4. The adult root system, Biotropica, 1977, vol. 9, pp. 145–155.

    Article  Google Scholar 

  29. Patiño, S., Gilbert, G.S., Zotz, G., and Tyree, M.T., Growth and survival of aerial roots of hemiepiphytes in a lower montane tropical moist forest in Panama, J. Tropic. Ecol., 1999, vol. 15, pp. 651–665.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. K. Eskov.

Additional information

Original Russian Text © A.K. Eskov, N.V. Zhukovskaya, E.I. Bystrova, Yu.V. Orlova, V.A. Antipina, V.B. Ivanov, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 6, pp. 834–846.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eskov, A.K., Zhukovskaya, N.V., Bystrova, E.I. et al. Growth of aerial roots with an extensive elongation zone by the example of a hemiepiphyte Monstera deliciosa . Russ J Plant Physiol 63, 822–834 (2016).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Monstera deliciosa
  • aerial roots
  • epiphytes
  • root growth
  • cell packets
  • intrusive growth
  • apical meristem
  • irregular elongation