Skip to main content
Log in

Involvement of ethylene in UV-B-induced changes in polyamine content in Arabidopsis thaliana plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Components of the ethylene signal perception and transduction pathway (ethylene signaling pathway, ESP) were studied in respect to their involvement in regulation of UV-B-induced changes in levels of polyamines in plants Arabidopsis thaliana (L.) Heynh. Experiments were performed on 15-day old wild type (WT) plants, the mutant etr1-1 with impaired ethylene reception, and the ethylene-insensitive mutant ctr1-1 with constitutively activated ESP. The plants were cultivated aseptically. It was found that exogenous ethylene or an inhibitor of its action 1-methylcyclopropen (1-MCP), which blocks ethylene receptors did not affect the polyamine content in leaf rosettes of plants, which had not been subjected to UV-B stress. A day after UV-B irradiation at intermediate (9 kJ/m2) or high doses (18 kJ/m2), the putrescine levels increased, respectively, 6.4 and 3.0 times in WT, 4.5 and 3.2 times in etr1-1, and 5.5 and 4.7 in ctr1-1. Pretreatment with ethylene (1 μL/L) for 24 h reduced the putrescine accumulation along with the loss in spermidine and spermine pools in WT plants and, to a lesser extent, in etr1-1 mutant. Treatment with 1-MCP (50 nL/L, 3 h before and 24 h after the irradiation) enhanced plant sensitivity to UV-B, putrescine accumulation, as well as spermidine and spermine consumption in WT and, to a lesser degree, in etr1-1. The mutant ctr1-1 was insensitive to both ethylene and 1-MCP. The results show that the activation of ESP by ethylene increases plant resistance to UV-B because the irradiation stimulates accumulation of putrescine, which converts to spermidine and spermine functioning as ROS traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ESP:

ethylene signaling pathway

1-MCP:

1-methylcyclopropene

PA:

polyamines

Put:

putrescine

Spd:

spermidine

Spm:

spermine

WT:

Arabidopsis thaliana wild type

References

  1. Frohnmeyer, H. and Staiger, D., Ultraviolet-B radiation-mediated responses in plants. Balancing damage and protection, Plant Physiol., 2003, vol. 133, pp. 1420–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mackerness, S.A.H., Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul., 2000, vol. 32, pp. 27–39.

    Article  CAS  Google Scholar 

  3. Solovchenko, A.E. and Merzlyak, M.N., Opticheskoe ekranirovanie kak fotozashchitnyi mekhanizm rastenii (Optical Screening as a Photoprotective Mechanism in Plants), Moscow: A-Litera, 2010.

    Google Scholar 

  4. Liu, J.H., Wang, W., Wu, H., Gong, X., and Moriguchi, T., Polyamines function in stress tolerance: from synthesis to regulation, Front. Plant Sci., 2015, vol. 6, pp. 1–10.

    CAS  Google Scholar 

  5. Hussain, S.S., Ali, M., Ahmad, M., and Siddigue, K.A.M., Polyamines: natural and engineered abiotic and biotic stress tolerance in plants, Biotechnol. Adv., 2011, vol. 29, pp. 300–311.

    Article  CAS  PubMed  Google Scholar 

  6. Shi, H. and Chan, Z., Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway, J. Integr. Plant Biol., 2014, vol. 56, pp. 114–121.

    Article  CAS  PubMed  Google Scholar 

  7. Kaur-Sawhney, R., Tiburcio, A., Altabella, T., and Galston, A.W., Polyamines in plants: an overview, J. Cell Mol. Biol., 2003, vol. 2, pp. 1–12.

    Google Scholar 

  8. Kuznetsov, Vl.V., Radyukina, N.L., and Shevyakova, N.I., Polyamines and stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.

    Article  CAS  Google Scholar 

  9. Drolet, G., Dumbroff, E.B., Legge, R., and Tompson, J.E., Radical scavenging properties of polyamines, Phytochemistry, 1986, vol. 25, p. 367.

    Article  CAS  Google Scholar 

  10. Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M., and Casero, R.A., The natural polyamine spermine functions directly as a free radical scavenger, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 11140–11145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bhanagar, P., Minocha, R., and Minocha, S., Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism, Plant Physiol., 2002, vol. 128, pp. 1455–1469.

    Article  Google Scholar 

  12. Wang C.Y. and Wellburn A.R., Role of ethylene under stress condition, in Stress Responses in Plants: Adaptation and Acclimation Mechanisms, Alscher, R. and Cucumming, J., Eds., New-York: Wiley, 1990, pp. 147–173.

    Google Scholar 

  13. Abeles, F., Morgan, P., and Salveit, J., Ethylene in Plant Biology, San Diego: Academic, 1992.

    Google Scholar 

  14. Rakitin, V.Yu., Prudnikova, O.N., Karyagin, V.V., Rakitina, T.Ya., Vlasov, P.V., Borisova, T.A., Novikova, G.V., and Moshkov, I.E., Ethylene evolution and ABA and polyamine contents in Arabidopsis thaliana during UV-B stress, Russ. J. Plant Physiol., 2008, vol. 55, pp. 321–327.

    Article  CAS  Google Scholar 

  15. Rakitin, V.Yu., Karyagin, V.V., Rakitina, T.Ya., Prudnikova, O.N., and Vlasov, P.V., UV-B stress-induced ABA production in Arabidopsis thaliana mutants defective in ethylene signal transduction pathway, Russ. J. Plant Physiol., 2008, vol. 55, pp. 854–856.

    Article  CAS  Google Scholar 

  16. Rakitina, T.Ya., Rakitin, V.Yu., Vlasov, P.V., and Prudnikova, O.N., Effect of ABA on the UV-B-induced ethylene evolution by the etr and ctr mutants of Arabidopsis thaliana, Russ. J. Plant Physiol., 2004, vol. 51, pp. 663–667.

    Article  CAS  Google Scholar 

  17. Rakitina, T.Ya., Vlasov, P.V., Zhalilova, F.Kh., and Kefeli, V.I., Abscisic acid and ethylene in mutants of Arabidopsis thaliana differing in their resistance to ultraviolet(UF-B) radiation stress, Russ. J. Plant Physiol., 1994, vol. 41, pp. 599–603.

    Google Scholar 

  18. Rakitin, V.Yu., Prudnikova, O.N., Rakitina, T.Ya., Karyagin, V.V., Vlasov, P.V., Novikova, G.V., and Moshkov, I.E., Interaction between ethylene and ABA in the regulation of polyamine level in Arabidopsis thaliana during UV-B stress, Russ. J. Plant Physiol., 2009, vol. 56, pp. 147–153.

    Article  CAS  Google Scholar 

  19. Woest, K. and Kieber, J.J., The molecular basis of ethylene signaling in Arabidopsis, Philos. Trans. Sci. Lond. B: Biol. Sci., 1998, vol. 353, pp. 1431–1438.

    Article  Google Scholar 

  20. Alonso, J.M. and Stepanova, A.N., The ethylene signaling pathway, Science, 2004, vol. 306, pp. 1513–1515.

    Article  CAS  PubMed  Google Scholar 

  21. Veleminsky, J. and Gichner, T., Sterile culture of Arabidopsis on agar medium, Arabidopsis Information Service, Kranz, A.R., Ed., Frankfurt am Main: J.W. Goethe-Univ., 1964, vol. 1, pp. 34–35.

    Google Scholar 

  22. Baslavskaya, S.S. and Trubetskova, O.M., Praktikum po fiziologii rastenii (Practical Works for Plant Physiology), Moscow: Moscow Gos. Univ., 1964.

    Google Scholar 

  23. Rakitin, V.Yu. and Rakitin, L.Yu., Determination of gas exchange and the content of ethylene, carbon dioxide, and oxygen in the tissues of higher plants, Sov. Plant Physiol., 1986, vol. 33, pp. 403–413.

    CAS  Google Scholar 

  24. Sisler, E.C. and Serek, M., Inhibitors of ethylene responses in plants at the receptor level: recent developments, Physiol. Plant., 1997, vol. 100, pp. 577–582.

    Article  CAS  Google Scholar 

  25. Flores, H.E. and Galston, A.W., Analysis of polyamines in higher plants by high performance liquid chromatography, Plant Physiol., 1982, vol. 69, pp. 701–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rakitin, V.Yu., Prudnikova, O.N., Stetsenko, L.A., and Shevyakova, N.I., Determination of free and bound polyamines using high performance liquid chromatography, in Molekulyarno-geneticheskie metody v sovremennoi biologii rastenii (Molecular and Genetic Techniques in Modern Plant Biology), Kuznetsov, Vl.V., Kusnetsov, V.V., and Romanov, G.A., Eds., Moscow: Binom, 2011, pp. 337–347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Rakitin.

Additional information

Original Russian Text © O.N. Prudnikova, T.Ya. Rakitina, V.V. Karyagin, P.V. Vlasov, V.Yu. Rakitin, 2016, published in Fiziologiya Rastenii, 2016, Vol. 63, No. 5, pp. 644–648.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prudnikova, O.N., Rakitina, T.Y., Karyagin, V.V. et al. Involvement of ethylene in UV-B-induced changes in polyamine content in Arabidopsis thaliana plants. Russ J Plant Physiol 63, 604–608 (2016). https://doi.org/10.1134/S1021443716050101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050101

Keywords

Navigation