Skip to main content
Log in

Ethylene is involved in the actin cytoskeleton rearrangement during the root gravitropic response of Arabidopsis thaliana

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Gravitropism, the directed plant growth with respect to the gravity vector, is regulated by auxin and its polar transport system, several secondary messengers, and by the cytoskeleton. Recently we have shown that the actin cytoskeleton in the root transition zone of Arabidopsis thaliana (L.) Heynh was rearranged after gravistimulation (rotation by 90°): the fraction of axially aligned microfilaments decreased and the fraction of oblique and transversally-oriented microfilaments increased. In the present research we have studied the effect of ethylene and inhibitors of its synthesis on actin cytoskeleton rearrangement during the gravitropic response. Application of the ethylene releasing substance ethephon to A. thaliana seedlings led to the disassembly of actin microfilaments as well as their broad angle distribution in cells of the root transition zone. This actin rearrangement was escaped by treatment with the ethylene synthesis inhibitor aminoethoxyvinylglycine (AVG). Another negative regulator of ethylene, salicylic acid, was shown to disturb actin microfilament rearrangement as well. We conclude that ethylene is essential for the process of actin cytoskeleton rearrangement in root cortex cells during the gravitropic bending response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AVG:

L-a-(2-Aminoethoxyvinyl)glycine

ACC:

1-aminocyclopropane-1-carboxylic acid

fABD2:

second actinbinding domain of fimbrin 1

GFP:

green fluorescent protein

References

  1. Sato, E.M., Hijazi, H., M.J. Bennett, M.J., Vissenberg, K. and Swarup, R., New insights into the dynamics of root gravitropic signalling, J. Exp. Bot., 2015, vol. 66, p. 2155–2165.

    Article  CAS  PubMed  Google Scholar 

  2. Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 502–514.

    Article  CAS  Google Scholar 

  3. Neljubow, D., Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderer Pflanzen, Beih. Bot. Centralbl., 1901, vol. 10, pp. 128–138.

    Google Scholar 

  4. Morita, M.T., Directional gravity sensing in gravitropism, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 705–720.

    Article  CAS  PubMed  Google Scholar 

  5. Blancaflor, E.B., Regulation of plant gravity sensing and signaling by the actin cytoskeleton, Am. J. Bot., 2013, vol. 100, pp. 143–152.

    Article  CAS  PubMed  Google Scholar 

  6. Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., Mähönen, A., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B., and Friml, J., Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions, Nature, 2008, vol. 456, pp. 962–966.

    CAS  PubMed  Google Scholar 

  7. Rahman, A., Takahashi, M., Shibasaki, K., Wu, S., Inaba, T., Tsurumi, S., and Baskin, T.I., Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells, Plant Cell, 2010, vol. 22, pp. 1762–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pozhvanov, G.A., Suslov, D.V., and Medvedev, S.S., Actin cytoskeleton rearrangements during the gravitropic response of Arabidopsis roots, Tsitologiya, 2013, vol. 55, pp. 28–35.

    CAS  Google Scholar 

  9. Nick, P. Han, M.-J., and An, G., Auxin stimulates its own transport by shaping actin filaments, Plant Physiol., 2009, vol. 151, pp. 155–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao, Y., Zhao, S., Mao, T., Qu, X., Cao, W., Zhang, L., Zhang, W., He, L., Li, S., Ren, S., Zhao, J., Zhu, G., Huang, S., Ye, K., Ming, Y.M., et al., The plant-specific actin binding protein SCAB1 stabilizes actin filaments and regulates stomatal movement in Arabidopsis, Plant Cell, 2011, vol. 23, pp. 2314–2330.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sheahan, M.B., Staiger, C.J., Rose, R.J., and McCurdy, D.W., A green fluorescent protein fusion to actin-binding domain 2 of Arabidopsis fimbrin highlights new features of a dynamic actin cytoskeleton in live plant cells, Plant Physiol., 2004, vol. 136, pp. 3968–3978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacques, E., Buytaert, J., Wells, D.M., Lewandowski, M., Bennett, M.J., Dirckx, J., Verbelen, J.P., and Vissenberg, K., MicroFilament Analyzer, an image analysis tool for quantifying fibrillar orientation, reveals changes in microtubule organization during gravitropism, Plant J., 2013, vol. 74, pp. 1045–1058.

    Article  CAS  PubMed  Google Scholar 

  13. Baluška, F., Barlow, P.W., Baskin, T.I., Chen, R., Feldman, L., Forde, B.G., Geisler, M., Jernstedt, J., Menzel, D., Muday, G.K., and Murphy, A., What is apical and what is basal in plant root development? Trends Plant Sci., 2005, vol. 10, pp. 409–411.

    Article  PubMed  Google Scholar 

  14. Wheeler, R.M. and Salisbury, F.B., Gravitropism in higher plant shoots. I. A role for ethylene, Plant Physiol., 1981, vol. 67, pp. 686–690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kramer, S., Piotrowski, M., Èhnemann, F.K., and Edelmann, H.G., Physiological and biochemical characterization of ethylene-generated gravicompetence in primary shoots of coleoptile-less gravi-incompetent rye seedlings, J. Exp. Bot., 2003, vol. 54, pp. 2723–2732.

    Article  CAS  PubMed  Google Scholar 

  16. Edelmann, H.G. and Roth, U., Gravitropic plant growth regulation and ethylene: an unsought cardinal coordinate for a disused model, Protoplasma, 2006, vol. 229, pp. 183–191.

    Article  CAS  PubMed  Google Scholar 

  17. Harrison, M.A. and Pickard, B.G., Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls, Plant Physiol., 1986, vol. 80, pp. 592–595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leslie, C.A. and Romani, R.J., Inhibition of ethylene biosynthesis by salicylic acid, Plant Physiol., 1988, vol. 88, pp. 833–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Medvedev, S.S. and Markova, I.V., Participation of salicylic acid in plant gravitropism, Dokl. Akad. Nauk SSSR, 1991, vol. 316, pp. 1014–1016.

    CAS  Google Scholar 

  20. Lee, J.H., Jin, E.S., and Kim, W.T., Inhibition of auxin-induced ethylene production by salicylic acid in mung bean hypocotyls, J. Plant Biol., 1999, vol. 42, pp. 1–7.

    Article  Google Scholar 

  21. Matoušková, J., Janda, M., Fišer, R., Šašek, V., Kocourková, D., Burketová, L., Dušková, J., Martinec, J., and Valentová, O., Changes in actin dynamics are involved in salicylic acid signaling pathway, Plant Sci., 2014, vol. 223, pp. 36–44.

    Article  PubMed  Google Scholar 

  22. Vicente, M.R. and Plasencia, J., Salicylic acid beyond defence: its role in plant growth and development, J. Exp. Bot., 2011, vol. 62, pp. 3321–3338.

    Article  Google Scholar 

  23. Durango, D., Pulgarin, N., Echeverri, F., Escobar, G., and Quiñones, W., Effect of salicylic acid and structurally related compounds in the accumulation of phytoalexins in cotyledons of common bean (Phaseolus vulgaris L.) cultivars, Molecules, 2013, vol. 9, pp. 10609–10628.

    Article  Google Scholar 

  24. Madlung, A., Behringer, F.J., and Lomax, T.L., Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato, Plant Physiol., 1999, vol. 120, pp. 897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gupta, A., Singh, M., Jones, A.M., and Laxmi, A., Hypocotyl directional growth in Arabidopsis: a complex trait, Plant Physiol., 2012, vol. 159, pp. 1463–1476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yu, Y.B. and Yang, S.F., Auxin-induced ethylene production and its inhibition by aminoethoxyvinyiglycine and cobaltion, Plant Physiol., 1979, vol. 64, pp. 1074–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, S.C., Kim, Y.S.K., Lee, J.Y., Kaufman, P.B., Kirakosyan, A., Yun, H.S., Kim, T.W., Kim, S.Y., Cho, M.H., Lee, J.S., and Kim, S.K., Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays), Physiol. Plant., 2004, vol. 121, pp. 666–673.

    Article  CAS  Google Scholar 

  28. Muday, G.K., Brady, S.R., Argueso, C., Deruère, J., Kieber, J.J., and DeLong, A., RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling, Plant Physiol., 2006, vol. 141, pp. 1617–1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, S.J., Chang, C.L., Wang, P.H., Tsai, M.C., Hsu, P.H., and Chang, F., A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana, J. Exp. Bot., 2013, vol. 64, pp. 4343–4360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verbelen, J.P., Cnodder, T.D., Le, J., Vissenberg, K., and Baluška, F., The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: meristematic zone, transition zone, fast elongation zone and growth terminating zone, Plant Signal. Behav., 2006, vol. 1, pp. 296–304.

    PubMed  Google Scholar 

  31. Baluška, F., Mancuso, S., Volkmann, D., and Barlow, P.W., Root apex transition zone: a signallingresponse nexus in the root, Trends Plant Sci., 2010, vol. 15, pp. 402–408.

    Article  PubMed  Google Scholar 

  32. Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., and Palme, K., Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis, Nature, 2002, vol. 415, pp. 806–809.

    Article  PubMed  Google Scholar 

  33. De Cnodder, T., Vissenberg, K., van der Straeten, D., and Verbelen, J.P., Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions, New Phytol., 2005, vol. 168, pp. 541–550.

    Article  CAS  PubMed  Google Scholar 

  34. Kandasamy, M.K., Deal, R.B., McKinney, E.C., and Meagher, R.B., Plant actin-related proteins, Trends Plant Sci., 2004, vol. 9, pp. 196–202.

    Article  CAS  PubMed  Google Scholar 

  35. Baluška, F., Volkmann, D., and Barlow, B.W., A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications, J. Plant Growth Regul., 2001, vol. 20, pp. 170–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pozhvanov.

Additional information

Published in Russian in Fiziologiya Rastenii, 2016, Vol. 63, No. 5, pp. 624–635.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozhvanov, G.A., Gobova, A.E., Bankin, M.P. et al. Ethylene is involved in the actin cytoskeleton rearrangement during the root gravitropic response of Arabidopsis thaliana . Russ J Plant Physiol 63, 587–596 (2016). https://doi.org/10.1134/S1021443716050095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443716050095

Keywords

Navigation