High pressure effect on photosynthetic properties of green plant leaves

Abstract

We investigated the effects of high pressure treatment on green plant leaves of two species, red rose (Rosa rubiginosa L.) and silver birch male (Betula pendula Roth). Both species were treated with pressure up to 100 bar in order to explore stress reactions, including desirable or undesirable metabolites in plant. When increasing the pressure, chlorophyll (Chl) fluorescence maximum shifts to the wavelength of about 680 nm for both red rose and silver birch, with shift rates–0.062 nm/bar and–0.082 nm/bar, respectively. High pressure induces the changes of the position for the second fluorescence maximum at approximately 730 nm in both species with the same shift rate–0.083 nm/bar. When increasing pressure the change of the photosynthetic apparatus efficiency decreases for both plant species slowly and nonlinearly. High-pressure treatments irreversibly damaged the leaf tissue and at this way induced changes of Chl fluorescence and photosynthetic efficiency.

This is a preview of subscription content, access via your institution.

Abbreviations

Chl:

chlorophyll

Cont:

atmospheric pressure (control conditions)

ɛ:

photosynthetic apparatus efficiency

References

  1. 1.

    Mori, Y., Yokota, S., and Ono, F., Germination of vegetable seeds exposed to very high pressure, in The 23rd Int. Conf.–High Pressure Science and Technology–(AIRAPT-23), Gupta, S., Ed., 2012, p. 377.

    Google Scholar 

  2. 2.

    Ono, F., Minami, K., Saigusa, M., Matsushima, Y., Mori, Y., Takarabe, K., Saini, N.L., and Yamashita, M., Life of Artemia under very high pressure, J. Phys. Chem. Solids, 2010, vol. 171, pp. 1127–1130.

    Article  Google Scholar 

  3. 3.

    Drickamer, H.G., Pressure-tuning spectroscopy: a tool for investigating molecular interactions, in High Pressure Effects in Molecular Biophysics and Enzymology, Markley, J.L., Northrop, D.B., and Royer, C.A., Eds., New York: Oxford Univ. Press, 1996, pp. 14–32.

    Google Scholar 

  4. 4.

    Khanizadeh, S. and DeEll, J.N.H., Use of chlorophyll fluorescence to evaluate chilling tolerance in strawberry plants, Acta Hortic., 2000, vol. 538, pp. 453–455.

    Article  Google Scholar 

  5. 5.

    Lichtenthaler, H.K., In vivo chlorophyll fluorescence as a tool for stress detection in plants, in Applications of Chlorophyll Fluorescence, Lichtenthaler, H.K., Ed., Nethelands: Kluwer, 1988, pp. 129–142.

    Google Scholar 

  6. 6.

    Chang, H.C., Jankowiak, R., Reddy, N.R.S., and Small, G.J., Pressure dependence of primary charge separation in a photosynthetic reaction center, Chem. Phys., 1995, vol. 197, pp. 307–321.

    Article  CAS  Google Scholar 

  7. 7.

    Gall, A., Ellervee, A., Bellissent-Funel, M.C., Robert, B., and Freiberg, A., Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1, Biophys. J.., 2001, vol. 80, pp. 1487–1497.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. 8.

    Gall, B., Ellervee, A., Tars, M., Scheer, H., and Freiberg, A., Pressure effects on absorption spectra of the isolated reaction center of photosystem II,Photochem. Photobiol., 1997, vol. 52, pp. 225–231.

  9. 9.

    Ihalainen, J.A., Ratsep, M., Jensen, P.E., Scheller, H.V., Croce, R., Bassi, R., Korppi-Tommola, J.E.I., and Freiberg, A., Red spectral forms of chlorophylls in green plant PSIa site-selective and high-pressure spectroscopy study, J. Phys. Chem. B., 2003, vol. 107, pp. 9086–9093.

    Article  CAS  Google Scholar 

  10. 10.

    Kangur, L., Leiger, K., and Freiberg, A., Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment protein complexes, in Joint 21st AIRAPT and 45th EHPRG Int. Conf.–High Pressure Science and Technology–, Angilella, G.G.N., Pucci, R., and Siringo, F., Eds., 2008, p. 121.

    Google Scholar 

  11. 11.

    Ono, F., Mori, Y., Sougawa, M., Takarabe, K., Hada, Y., Nishihira, N., Motose, H., Saigusa, M., Matsushima, Y., Yamazaki, D., Ito, E., and Saini, N.L., Effect of very high pressure on life of plants and animals, The 23rd Int. Conf.–High Pressure Science and Technology–(AIRAPT-23), Gupta, S., Ed., 2012, p. 377.

    Google Scholar 

  12. 12.

    Krebbers, B., Matser, A.M., Koets, M., and Den R.W., Berg, R.W., Quality and storage-stability of high-pressure preserved green beans, J. Food Eng., 2002, vol. 54, pp. 27–33.

    Article  Google Scholar 

  13. 13.

    Lopez-Malo, A., Palou, E., Barbosa-Canovas, G.V., Welti-Chanes, J., and Swanson, B.G., Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree, Food Res. Int., 1998, vol. 31, pp. 549–556.

    Article  CAS  Google Scholar 

  14. 14.

    Bardou, F., Bouchaud, J.P., Aspect, A., and CohenTannoudji, C., L–vy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest, Cambridge, UK: Cambridge Univ. Press, 2002.

    Google Scholar 

  15. 15.

    Jovani, B.R., Zekovi, L.D., and Radenkovi, B., Red fluorescence spectra as a new means of determining the rate of damage to photosynthesis apparatus in plants caused by stress, J. Biol. Phys., 1991, vol. 18, pp. 57–63.

    Article  Google Scholar 

  16. 16.

    Jovani, B.R. and Dramicanin, M.D., In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (Cucurbita pepo) leaves, Luminescence., 2003, vol. 18, pp. 274–277.

    Article  Google Scholar 

  17. 17.

    Jovani, B.R., Bela, I., and Kasalica, B., Effect of a high DC electric field on plant leaves reflectivity, Int. J. Environ. Stud., 2001, vol. 58, pp. 357–363.

    Article  Google Scholar 

  18. 18.

    Jovani, B.R. and Jevtovi, R., Effect of a permanent magnetic field on the optical and physiological properties on green plant leaves, Int. J. Environ. Stud., 2002, vol. 59, pp. 599–606.

    Article  Google Scholar 

  19. 19.

    Jovani, B.R., Bojovi, S., Pani, B., Radenkovi, B., and Despotovi, M., The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves, Health., 2010, vol. 2, pp. 395–399.

    Article  Google Scholar 

  20. 20.

    Jovani, B.R. and Jovani, S.B., The effect of high concentration of negative ions in the air on the chlorophyll content in plant leaves, Water Air Soil Pollut., 2001, vol. 129, pp. 259–265.

    Article  Google Scholar 

  21. 21.

    Foguel, D., Chaloub, R.M., Silva, J.L., Crofts, A.R., and Weber, G., Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria, Biophys. J., 1992, vol. 63, pp. 1613–1622.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  22. 22.

    Schreiber, U. and Vidaver, W., Photosynthetic energy transfer reversibly inhibited by hydrostatic pressure, Photochem. Photobiol., 1973, vol. 18, pp. 205–208.

    Article  CAS  Google Scholar 

  23. 23.

    Anderson, B., Buah-Bassuah, P.K., and Tetteh, J.P., Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L.) Walp) varieties, Meas. Sci. Technol.., 2004, vol. 15, p. 1255.

  24. 24.

    Freiberg, A., Ellervee, A., Kukk, P., Laisaar, A., Tars, M., and Timpmann, K., Pressure effects on spectra of photosynthetic light-harvesting pigment–protein complexes, Chem. Phys. Lett., 1993, vol. 214, pp. 10–16.

    Article  CAS  Google Scholar 

  25. 25.

    Clayton, R.K. and Devault, D., Effects of high pressure on photochemical reaction centers from Rhodopseudomonas spheroides, Photochem. Photobiol., 1972, vol. 15, pp. 165–175.

    Article  CAS  Google Scholar 

  26. 26.

    Bai, C., Li, G., Teng, C., and Duan, J., Changes in chlorophyll fluorescence of rice mutants induced by high hydrostatic pressure, Rice Sci., 2003, vol. 11, pp. 29–32.

    Google Scholar 

  27. 27.

    Tsai, Y., Yang, S., Jiang, S., Ko, S., Hung, S., Kuo, S., and Pan, R., High-pressure effects on vacuolar H+-ATPase from etiolated mung bean seedlings, J. Protein Chem., 1998, vol. 17, pp. 161–172.

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Freiberg, A., Ellervee, A., Tars, M., Timpmann, K., and Laisaar, A., Electron transfer and electronic energy relaxation under high hydrostatic pressure, Biophys. Chem., 1997, vol. 68, pp. 189–205.

    Article  PubMed  Google Scholar 

  29. 29.

    Callahan, P.M. and Cotton, T.M., Assignment of bacteriochlorophyll a ligation state from absorption and resonance Raman spectra, J. Am. Chem. Soc., 1987, vol. 109, pp. 7001–7007.

    Article  CAS  Google Scholar 

  30. 30.

    Pawlus, S., Paluch, M., and Dzida, M., Molecular dynamics changes induced by hydrostatic pressure in a supercooled primary alcohol, J. Phys. Chem. Lett., 2010, vol. 1, pp. 3249–3253.

    Article  CAS  Google Scholar 

  31. 31.

    Prestamo, G. and Arroyo, G., High hydrostatic pressure effects on vegetable structure, J. Food Sci., 1998, vol. 63, pp. 878–881.

    Article  CAS  Google Scholar 

  32. 32.

    Beer, S. and Waisel, Y., Effects of light and pressure on photosynthesis in two seagrasses, Aquat. Bot., 1982, vol. 13, pp. 331–337.

    Article  Google Scholar 

  33. 33.

    Schlueter, O., Foerster, J., Geyer, M., Knorr, D., and Herppich, W.B., Characterization of high-hydrostaticpressure effects on fresh produce using chlorophyll fluorescence image analysis, Food Bioprocess Technol., 2009, vol. 2, pp. 291–299.

    Article  CAS  Google Scholar 

  34. 34.

    Kaiser, W., Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, mesoand xerophytes under osmotic stress, Planta., 1982, vol. 154, pp. 538–545.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Dale, H.M., Hydrostatic pressure as the controlling factor in the depth distribution of Eurasian watermilfoil, Myriophyllum spicatum L., Hydrobiologia., 1981, vol. 79, pp. 239–244.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. R. Jovanić.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jovanić, B.R., Radenković, B., Despotović-Zrakić, M. et al. High pressure effect on photosynthetic properties of green plant leaves. Russ J Plant Physiol 63, 85–91 (2016). https://doi.org/10.1134/S102144371601009X

Download citation

Keywords

  • Rosa rubiginosa
  • Betula pandula
  • chlorophyll fluorescence
  • deep see
  • high pressure-spectroscopy
  • photosynthetic apparatus efficiency