Advertisement

Russian Journal of Plant Physiology

, Volume 63, Issue 1, pp 85–91 | Cite as

High pressure effect on photosynthetic properties of green plant leaves

  • B. R. JovanićEmail author
  • B. Radenković
  • M. Despotović-Zrakić
  • Z. Bogdanović
  • D. Barać
Research Papers
  • 60 Downloads

Abstract

We investigated the effects of high pressure treatment on green plant leaves of two species, red rose (Rosa rubiginosa L.) and silver birch male (Betula pendula Roth). Both species were treated with pressure up to 100 bar in order to explore stress reactions, including desirable or undesirable metabolites in plant. When increasing the pressure, chlorophyll (Chl) fluorescence maximum shifts to the wavelength of about 680 nm for both red rose and silver birch, with shift rates–0.062 nm/bar and–0.082 nm/bar, respectively. High pressure induces the changes of the position for the second fluorescence maximum at approximately 730 nm in both species with the same shift rate–0.083 nm/bar. When increasing pressure the change of the photosynthetic apparatus efficiency decreases for both plant species slowly and nonlinearly. High-pressure treatments irreversibly damaged the leaf tissue and at this way induced changes of Chl fluorescence and photosynthetic efficiency.

Keywords

Rosa rubiginosa Betula pandula chlorophyll fluorescence deep see high pressure-spectroscopy photosynthetic apparatus efficiency 

Abbreviations

Chl

chlorophyll

Cont

atmospheric pressure (control conditions)

ɛ

photosynthetic apparatus efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mori, Y., Yokota, S., and Ono, F., Germination of vegetable seeds exposed to very high pressure, in The 23rd Int. Conf.–High Pressure Science and Technology–(AIRAPT-23), Gupta, S., Ed., 2012, p. 377.Google Scholar
  2. 2.
    Ono, F., Minami, K., Saigusa, M., Matsushima, Y., Mori, Y., Takarabe, K., Saini, N.L., and Yamashita, M., Life of Artemia under very high pressure, J. Phys. Chem. Solids, 2010, vol. 171, pp. 1127–1130.CrossRefGoogle Scholar
  3. 3.
    Drickamer, H.G., Pressure-tuning spectroscopy: a tool for investigating molecular interactions, in High Pressure Effects in Molecular Biophysics and Enzymology, Markley, J.L., Northrop, D.B., and Royer, C.A., Eds., New York: Oxford Univ. Press, 1996, pp. 14–32.Google Scholar
  4. 4.
    Khanizadeh, S. and DeEll, J.N.H., Use of chlorophyll fluorescence to evaluate chilling tolerance in strawberry plants, Acta Hortic., 2000, vol. 538, pp. 453–455.CrossRefGoogle Scholar
  5. 5.
    Lichtenthaler, H.K., In vivo chlorophyll fluorescence as a tool for stress detection in plants, in Applications of Chlorophyll Fluorescence, Lichtenthaler, H.K., Ed., Nethelands: Kluwer, 1988, pp. 129–142.Google Scholar
  6. 6.
    Chang, H.C., Jankowiak, R., Reddy, N.R.S., and Small, G.J., Pressure dependence of primary charge separation in a photosynthetic reaction center, Chem. Phys., 1995, vol. 197, pp. 307–321.CrossRefGoogle Scholar
  7. 7.
    Gall, A., Ellervee, A., Bellissent-Funel, M.C., Robert, B., and Freiberg, A., Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1, Biophys. J.., 2001, vol. 80, pp. 1487–1497.PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Gall, B., Ellervee, A., Tars, M., Scheer, H., and Freiberg, A., Pressure effects on absorption spectra of the isolated reaction center of photosystem II,Photochem. Photobiol., 1997, vol. 52, pp. 225–231.Google Scholar
  9. 9.
    Ihalainen, J.A., Ratsep, M., Jensen, P.E., Scheller, H.V., Croce, R., Bassi, R., Korppi-Tommola, J.E.I., and Freiberg, A., Red spectral forms of chlorophylls in green plant PSIa site-selective and high-pressure spectroscopy study, J. Phys. Chem. B., 2003, vol. 107, pp. 9086–9093.CrossRefGoogle Scholar
  10. 10.
    Kangur, L., Leiger, K., and Freiberg, A., Evidence for high-pressure-induced rupture of hydrogen bonds in LH2 photosynthetic antenna pigment protein complexes, in Joint 21st AIRAPT and 45th EHPRG Int. Conf.–High Pressure Science and Technology–, Angilella, G.G.N., Pucci, R., and Siringo, F., Eds., 2008, p. 121.Google Scholar
  11. 11.
    Ono, F., Mori, Y., Sougawa, M., Takarabe, K., Hada, Y., Nishihira, N., Motose, H., Saigusa, M., Matsushima, Y., Yamazaki, D., Ito, E., and Saini, N.L., Effect of very high pressure on life of plants and animals, The 23rd Int. Conf.–High Pressure Science and Technology–(AIRAPT-23), Gupta, S., Ed., 2012, p. 377.Google Scholar
  12. 12.
    Krebbers, B., Matser, A.M., Koets, M., and Den R.W., Berg, R.W., Quality and storage-stability of high-pressure preserved green beans, J. Food Eng., 2002, vol. 54, pp. 27–33.CrossRefGoogle Scholar
  13. 13.
    Lopez-Malo, A., Palou, E., Barbosa-Canovas, G.V., Welti-Chanes, J., and Swanson, B.G., Polyphenoloxidase activity and color changes during storage of high hydrostatic pressure treated avocado puree, Food Res. Int., 1998, vol. 31, pp. 549–556.CrossRefGoogle Scholar
  14. 14.
    Bardou, F., Bouchaud, J.P., Aspect, A., and CohenTannoudji, C., L–vy Statistics and Laser Cooling: How Rare Events Bring Atoms to Rest, Cambridge, UK: Cambridge Univ. Press, 2002.Google Scholar
  15. 15.
    Jovani, B.R., Zekovi, L.D., and Radenkovi, B., Red fluorescence spectra as a new means of determining the rate of damage to photosynthesis apparatus in plants caused by stress, J. Biol. Phys., 1991, vol. 18, pp. 57–63.CrossRefGoogle Scholar
  16. 16.
    Jovani, B.R. and Dramicanin, M.D., In vivo monitoring of chlorophyll fluorescence response to low-dose gamma-irradiation in pumpkin (Cucurbita pepo) leaves, Luminescence., 2003, vol. 18, pp. 274–277.CrossRefGoogle Scholar
  17. 17.
    Jovani, B.R., Bela, I., and Kasalica, B., Effect of a high DC electric field on plant leaves reflectivity, Int. J. Environ. Stud., 2001, vol. 58, pp. 357–363.CrossRefGoogle Scholar
  18. 18.
    Jovani, B.R. and Jevtovi, R., Effect of a permanent magnetic field on the optical and physiological properties on green plant leaves, Int. J. Environ. Stud., 2002, vol. 59, pp. 599–606.CrossRefGoogle Scholar
  19. 19.
    Jovani, B.R., Bojovi, S., Pani, B., Radenkovi, B., and Despotovi, M., The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves, Health., 2010, vol. 2, pp. 395–399.CrossRefGoogle Scholar
  20. 20.
    Jovani, B.R. and Jovani, S.B., The effect of high concentration of negative ions in the air on the chlorophyll content in plant leaves, Water Air Soil Pollut., 2001, vol. 129, pp. 259–265.CrossRefGoogle Scholar
  21. 21.
    Foguel, D., Chaloub, R.M., Silva, J.L., Crofts, A.R., and Weber, G., Pressure and low temperature effects on the fluorescence emission spectra and lifetimes of the photosynthetic components of cyanobacteria, Biophys. J., 1992, vol. 63, pp. 1613–1622.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Schreiber, U. and Vidaver, W., Photosynthetic energy transfer reversibly inhibited by hydrostatic pressure, Photochem. Photobiol., 1973, vol. 18, pp. 205–208.CrossRefGoogle Scholar
  23. 23.
    Anderson, B., Buah-Bassuah, P.K., and Tetteh, J.P., Using violet laser-induced chlorophyll fluorescence emission spectra for crop yield assessment of cowpea (Vigna unguiculata (L.) Walp) varieties, Meas. Sci. Technol.., 2004, vol. 15, p. 1255.Google Scholar
  24. 24.
    Freiberg, A., Ellervee, A., Kukk, P., Laisaar, A., Tars, M., and Timpmann, K., Pressure effects on spectra of photosynthetic light-harvesting pigment–protein complexes, Chem. Phys. Lett., 1993, vol. 214, pp. 10–16.CrossRefGoogle Scholar
  25. 25.
    Clayton, R.K. and Devault, D., Effects of high pressure on photochemical reaction centers from Rhodopseudomonas spheroides, Photochem. Photobiol., 1972, vol. 15, pp. 165–175.CrossRefGoogle Scholar
  26. 26.
    Bai, C., Li, G., Teng, C., and Duan, J., Changes in chlorophyll fluorescence of rice mutants induced by high hydrostatic pressure, Rice Sci., 2003, vol. 11, pp. 29–32.Google Scholar
  27. 27.
    Tsai, Y., Yang, S., Jiang, S., Ko, S., Hung, S., Kuo, S., and Pan, R., High-pressure effects on vacuolar H+-ATPase from etiolated mung bean seedlings, J. Protein Chem., 1998, vol. 17, pp. 161–172.CrossRefPubMedGoogle Scholar
  28. 28.
    Freiberg, A., Ellervee, A., Tars, M., Timpmann, K., and Laisaar, A., Electron transfer and electronic energy relaxation under high hydrostatic pressure, Biophys. Chem., 1997, vol. 68, pp. 189–205.CrossRefPubMedGoogle Scholar
  29. 29.
    Callahan, P.M. and Cotton, T.M., Assignment of bacteriochlorophyll a ligation state from absorption and resonance Raman spectra, J. Am. Chem. Soc., 1987, vol. 109, pp. 7001–7007.CrossRefGoogle Scholar
  30. 30.
    Pawlus, S., Paluch, M., and Dzida, M., Molecular dynamics changes induced by hydrostatic pressure in a supercooled primary alcohol, J. Phys. Chem. Lett., 2010, vol. 1, pp. 3249–3253.CrossRefGoogle Scholar
  31. 31.
    Prestamo, G. and Arroyo, G., High hydrostatic pressure effects on vegetable structure, J. Food Sci., 1998, vol. 63, pp. 878–881.CrossRefGoogle Scholar
  32. 32.
    Beer, S. and Waisel, Y., Effects of light and pressure on photosynthesis in two seagrasses, Aquat. Bot., 1982, vol. 13, pp. 331–337.CrossRefGoogle Scholar
  33. 33.
    Schlueter, O., Foerster, J., Geyer, M., Knorr, D., and Herppich, W.B., Characterization of high-hydrostaticpressure effects on fresh produce using chlorophyll fluorescence image analysis, Food Bioprocess Technol., 2009, vol. 2, pp. 291–299.CrossRefGoogle Scholar
  34. 34.
    Kaiser, W., Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, mesoand xerophytes under osmotic stress, Planta., 1982, vol. 154, pp. 538–545.CrossRefPubMedGoogle Scholar
  35. 35.
    Dale, H.M., Hydrostatic pressure as the controlling factor in the depth distribution of Eurasian watermilfoil, Myriophyllum spicatum L., Hydrobiologia., 1981, vol. 79, pp. 239–244.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • B. R. Jovanić
    • 1
    Email author
  • B. Radenković
    • 2
  • M. Despotović-Zrakić
    • 2
  • Z. Bogdanović
    • 2
  • D. Barać
    • 2
  1. 1.Institute of PhysicsUniversity of BelgradeZemunSerbia
  2. 2.Faculty of Organization ScienceUniversity of BelgradeBelgradeSerbia

Personalised recommendations