Skip to main content

Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants

Abstract

We investigated the hypotheses that two different varieties of Arabidopsis thaliana show differences in physiology and terpene production. The two varieties of A. thaliana used in this study were wild-type (WT) and transgenic line (CoxIV-FaNES I) genetically modified to emit nerolidol with linalool/nerolidol synthase (COX). Photosynthetic rate, electron transport rate, fluorescence, leaf volatile terpene contents and root volatile terpene contents were analyzed. For both types, we found co-eluting α-pinene+β-ocimene, limonene, and humulene in leaves; and in the roots we found co-eluting α-pinene+β-ocimene, sabinene+β-pinene, β-myrcene, limonene, and humulene. At the end of the growing cycle, COX plants tended to have lower pools of terpene compounds in their leaves, with 78.6% lower photosynthesis rates and 30.8% lower electron transport rates, compared with WT plants at that time. The maximal photochemical efficiency F v/F m was also significantly lower (25.5%) in COX plants, indicating that these varieties were more stressed than WT plants. However, COX plants had higher (239%) root terpene contents compared to WT plants. COX plants appear to favor root production of volatile terpenes rather than leaf production. Thus we conclude that there were significant differences between COX and WT plants in terms of terpenoid pools, stress status and physiology.

This is a preview of subscription content, access via your institution.

Abbreviations

A :

CO2 uptake

COX:

transgenic line (CoxIV-FaNES I)

ETR:

electron transport rate

F v/F m :

maximum photochemical efficiency of PSII

F/Fm :

actual photochemical efficiency of PSII

g s :

stomatal conductance

TPSs:

terpene synthases

VOCs:

volatile organic compounds

WT:

wild-type

References

  1. 1.

    Kesselmeier, J. and Staudt, M., Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology, J. Atmos. Chem., 1999, vol. 33, pp. 23–88.

    CAS  Article  Google Scholar 

  2. 2.

    Owen, S.M. and Peñuelas, J., Opportunistic emissions of volatile isoprenoids, Trends Plant Sci., 2005, vol. 10, pp. 420–426.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Penuelas, J. and Llusia, J., Bvocs: plant defense against climate warming? Trends Plant Sci., 2003, vol. 8, pp. 105–109.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Pichersky, E. and Gershenzon, J., The formation and function of plant volatiles: perfumes for pollinator attraction and defense, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 237–243.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Peñuelas, J., Ribas-Carbo, M., and Giles, L., Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase, J. Chem. Ecol., 1996, vol. 22, pp. 801–805.

    Article  PubMed  Google Scholar 

  6. 6.

    Chameides, W.L., Lindsay, R.W., Richardson, J., and Kiang, C.S., The role of biogenic hydrocarbons in urban photochemical smog–Atlanta as a case-study, Science, 1988, vol. 241, pp. 1473–1475.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Janson, R.W., Monoterpene emissions from Scots pine and Norwegian spruce, J. Geophys. Res., 1993, vol. 98, pp. 2839–2850.

    Article  Google Scholar 

  8. 8.

    Asensio, D., Peñuelas, J., Filella, I., and Llusià, J., Online screening of soil VOCs exchange responses to moisture, temperature and root presence, Plant Soil, 2007, vol. 291, pp. 249–261.

    CAS  Article  Google Scholar 

  9. 9.

    Asensio, D., Owen, S.M., Llusià, J., and Peñuelas, J., The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees, Soil Biol. Biochem., 2008, vol. 40, pp. 2937–2947.

    CAS  Article  Google Scholar 

  10. 10.

    Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J., and Turlings, T.C.J., Recruitment of entomopathogenic nematodes by insect damaged maize roots, Nature, 2005, vol. 434, pp. 732–737.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W.A., Verhoeven, H.A., Jongsma, M.A., Schwab, W., and Bouwmeester, H.J., Terpenoid metabolism in wild-type and transgenic Arabidopsis plants, Plant Cell, 2003, vol. 15, pp. 2866–2884.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. 12.

    Chen, F., Tholl, D., D’Auria, J.C., Farooq, A., Pichersky, E., and Gershenzon, J., Biosynthesis and emission of terpenoid volatiles from Arabidopsis flowers, Plant Cell, 2003, vol. 2, pp. 481–494.

    Article  Google Scholar 

  13. 13.

    Aubourg, S., Lecharny, A., and Bohlmann, J., Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana, Mol. Genet. Genomics, 2002, vol. 267, pp. 730–745.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Tholl, D., Chen, F., Petri, J., Gershenzon, J., and Pichersky, E., Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers, Plant J., 2005, vol. 42, pp. 757–771.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Aharoni, A., Jongsma, M.A., Kim, T.Y., Ri, M.B., Giri, A.P., Verstappen, F.W.A., Schwab, W., and Bouwmeester, H.J., Metabolic engineering of terpenoid biosynthesis in plants, Phytochem. Rev., 2006, vol. 5, pp. 49–58.

    CAS  Article  Google Scholar 

  16. 16.

    Huang, M., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J., and Tholl, D., Variation of herbivore-induced volatile terpenes among Arabidopsis ecotypes depends on allelic differences and subcellular targeting of two terpene synthases, TPS02 and TPS03, Plant Physiol., 2010, vol. 153, pp. 1293–1310.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. 17.

    Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., and Vivanco, J.M., Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 47–58.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    Juenger, T.E., Sen, S., Bray, E., Stahl, E., Wayne, T., McKay, J., and Richards, J.H., Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana, Plant Cell Environ., 2010, vol. 33, pp. 1268–1284.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kappers, I.F., Aharoni, A., van Herpen, T.W.J.M., Luckerhoff, L.L.P., Dicke, M., and Bouwmeester, H.J., Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis, Science, 2005, vol. 309, pp. 2070–2072.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Gibeau, D.M., Hulett, J., Cramer, G.R., and Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions, Plant Physiol., 1997, vol. 115, pp. 317–319.

    Article  Google Scholar 

  21. 21.

    Genty, B., Briantais, J.M., and Baker, N.R., The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence, Biochim. Biophys. Acta, 1989, vol. 990, pp. 87–92.

    CAS  Article  Google Scholar 

  22. 22.

    Blanch, J.S., Sampedro, L., Llusià, J., Moreira, X., Zas, R., and Peñuelas, J., Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, J. Chem. Ecol., 2012, vol. 14, pp. 66–72.

    CAS  Google Scholar 

  23. 23.

    van Poecke, R.M.P., Posthumus, M.A., and Dicke, M., Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis, J. Chem. Ecol., 2001, vol. 27, pp. 1911–1928.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Nagegowda, D.A., Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation, FEBS Lett., 2010, vol. 384, pp. 2965–2973.

    Article  Google Scholar 

  25. 25.

    Meir, S., Reuveni, Y., Rosenberger, I., Davidson, H., and Philosophhadas, S., Improvement of the postharvest keeping quality of cut flowers and cuttings by application of water-soluble antioxidants, ISHS Acta Hortic., 1994, vol. 368, pp. 355–364.

    Article  Google Scholar 

  26. 26.

    Hedtke, B., Meixner, M., Gillandt, S., Richter, E., Borner, T., and Weihe, A., Green fluorescent protein as a marker to investigate targeting of organellar RNA polymerases of higher plants in vivo, Plant J., 1999, vol. 17, pp. 557–561.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Beemster, G.T.S., de Vusser, K., de Tavernier, E., de Bock, K., and Inzé, D., Variation in growth rate between Arabidopsis ecotypes is correlated with cell division and A-type cyclin-dependent kinase activity, Plant Physiol., 2002, vol. 129, pp. 854–864.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. 28.

    Oxborough, K. and Baker, N.R., Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and without measuring Photosynth. Res., 1997, vol. 54, pp. 135–142.

    CAS  Google Scholar 

  29. 29.

    van Dam, N.M. and van der Meijden, E., A role for metabolomics in plant ecology, in Biology of Plant Metabolomics, Hall, R.D., Ed., Chichester, UK: Wiley, 2011, pp. 87–107.

    Google Scholar 

  30. 30.

    Basyuni, M., Baba, S., Inafuku, M., Iwasaki, H., Kinjo, K., and Oku, H., Expression of terpenoid synthase mRNA and terpenoid contents in salt stressed mangrove, J. Plant Res., 2009, vol. 166, pp. 1786–1800.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. S. Blanch.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanch, J.S., Peñuelas, J., Llusià, J. et al. Differences in photosynthesis and terpene content in leaves and roots of wild-type and transgenic Arabidopsis thaliana plants. Russ J Plant Physiol 62, 823–829 (2015). https://doi.org/10.1134/S1021443715060035

Download citation

Keywords

  • Arabidopsis thaliana
  • FaNES I
  • leaf terpene contents
  • root terpene contents
  • photosynthesis