Total phenol content and total antioxidant activity drop during Tacitus bellus direct shoot organogenesis


Changes in total phenolics content (TPC) and total antioxidant activity (TAA) in different morphogenic stages of Tacitus bellus (L.) Moran and J. Meyrán (Crassulaceae) direct shoot organogenesis in vitro were examined. A HPLC method was used for the assessment of changes in phenolic profile. Significant decrease in TPC and TAA, as well as the decline of the amount of specific phenolic compounds coincided with the initiation of shoot organogenesis. Additional decrease in TPC and TAA, and the disappearance of procyanidin glycoside, occurred associated with shoot development. Performed correlation analysis suggests phenolics as the main component of nonenzymatic antioxidant system involved in T. bellus direct shoot organogenesis, it argues in favor of involvement of specific phenolics in the regulation of early stages of T. bellus direct shoot organogenesis and indicates different fine regulatory mechanisms of early and late stages of shoot organogenesis.

This is a preview of subscription content, access via your institution.







superoxide dismutase




polyphenol oxidase


naphtaleneacetic acid


total antioxidant activity


total phenolics content


  1. 1.

    Sugimoto, K., Gordon, S.P., and Meyerowitz, E.M., Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol., 2011, vol. 21, pp. 212–218.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Reinert, J. and Bajaj, Y.P.S., Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture, New York: Springer-Verlag, 1977.

    Book  Google Scholar 

  3. 3.

    Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M., Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 16529–16534.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. 4.

    Su, Y.H., Liu, Y.B., and Zhang, X.S., Auxin–cytokinin interaction regulates meristem development, Mol. Plant, 2011, vol. 4, pp. 616–625.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  5. 5.

    Koes, R., Verweij, W., and Quattrocchio, F., Flavonoids: a colourful model for the regulation and evolution of biochemical pathways, Trends Plant Sci., 2005, vol. 10, pp. 236–242.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Franklin, G. and Dias, A.C.P., Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum, Plant Physiol. Biochem., 2011, vol. 49, pp. 835–842.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Arnaldos, T.L., Munoz, R., Ferrer, M.A., and Calderon, A.A., Changes in phenol content during strawberry (Fragaria × ananassa, cv. Chandler) callus culture, Physiol. Plant., 2001, vol. 113, pp. 315–322.

    CAS  Article  Google Scholar 

  8. 8.

    Jacobs, M. and Rubery, P.H., Naturally occuring auxin transport regulators, Science, 1988, vol. 241, pp. 346–349.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Peer, W.A. and Murphy, A.S., Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci., 2007, vol. 12, pp. 556–563.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Peer, W.A., Blakeslee, J.J., Yang, H., and Murphy, A.S., Seven things we think we know about auxin transport, Mol. Plant, 2011, vol. 4, pp. 487–504.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Agarwal, M. and Kamal, R., Studies on flavonoid production using in vitro cultures of Momordica charantia L., Ind. J. Biotechnol., 2007, vol. 6, pp. 277–279.

    CAS  Google Scholar 

  12. 12.

    Shilpashree, H.P. and Raim, R., In vitro plant regeneration and accumulation of flavonoids in Hypericum mysorense, Int. J. Integr. Biol., 2009, vol. 8, pp. 43–49.

    CAS  Google Scholar 

  13. 13.

    Subhashini, Devi, P.S., Satyanarayanam, B., Arundhati, A., and Raghava, Rao, T., Activity of antioxidant enzymes and secondary metabolites during in vitro regeneration of Sterculia urens, Biol. Plant., 2013, vol. 57, pp. 778–782.

    Article  Google Scholar 

  14. 14.

    Mitrović, A., Janošević, D., Budimir, S., and Bogdanović, Pristov, J., Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis, Biol. Plant., 2012, vol. 56, pp. 357–361.

    Article  Google Scholar 

  15. 15.

    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    CAS  Article  Google Scholar 

  16. 16.

    Arnao, M.B., Cano, A., and Acosta, M., Methods to measure the antioxidant activity in plant material. A comparative discussion, Free Radic. Res., 1999, vol. 32, pp. 89–96.

    Article  Google Scholar 

  17. 17.

    Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1965, vol. 16, pp. 144–158.

    CAS  Google Scholar 

  18. 18.

    Kanmegene, G. and Omokolo, D., Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L., Plant Growth Regul., 2003, vol. 40, pp. 53–57.

    Article  Google Scholar 

  19. 19.

    Cheng, Z.H., Wang, L., Sun, W., Zhang, Y., Zhou, C., Sum, Y.H., Li, W., Sun, T.T., Zhao, X.Y., Li, X.G., Cheng, Y., Zhao, Y., Xie, Q., and Zhang, X.S., Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3, Plant Physiol., 2013, vol. 161, pp. 240–251.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  20. 20.

    Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H., A large family of class III plant peroxidases, Plant Cell Physiol., 2001, vol. 42, pp. 462–468.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M., Sanchez-Rodriguez, E., Blasco, B., Rios, J.J., Romero, L., and Ruiz, J.M., Involvement of lignification and membrane permeability in the tomato root response to boron toxicity, Plant Sci., 2009, vol. 176, pp. 545–552.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Mitrović.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitrović, A., Maksimović, V., Mutavdžić, D. et al. Total phenol content and total antioxidant activity drop during Tacitus bellus direct shoot organogenesis. Russ J Plant Physiol 62, 700–705 (2015).

Download citation


  • Tacitus bellus
  • phenolics
  • shoot organogenesis
  • total antioxidant activity