Advertisement

Russian Journal of Plant Physiology

, Volume 62, Issue 5, pp 700–705 | Cite as

Total phenol content and total antioxidant activity drop during Tacitus bellus direct shoot organogenesis

  • A. MitrovićEmail author
  • V. Maksimović
  • D. Mutavdžić
  • J. Bogdanović Pristov
Brief Communications

Abstract

Changes in total phenolics content (TPC) and total antioxidant activity (TAA) in different morphogenic stages of Tacitus bellus (L.) Moran and J. Meyrán (Crassulaceae) direct shoot organogenesis in vitro were examined. A HPLC method was used for the assessment of changes in phenolic profile. Significant decrease in TPC and TAA, as well as the decline of the amount of specific phenolic compounds coincided with the initiation of shoot organogenesis. Additional decrease in TPC and TAA, and the disappearance of procyanidin glycoside, occurred associated with shoot development. Performed correlation analysis suggests phenolics as the main component of nonenzymatic antioxidant system involved in T. bellus direct shoot organogenesis, it argues in favor of involvement of specific phenolics in the regulation of early stages of T. bellus direct shoot organogenesis and indicates different fine regulatory mechanisms of early and late stages of shoot organogenesis.

Keywords

Tacitus bellus phenolics shoot organogenesis total antioxidant activity 

Abbreviations

BAP

benzylaminopurine

CAT

catalase

SOD

superoxide dismutase

POD

peroxidase

PPO

polyphenol oxidase

NAA

naphtaleneacetic acid

TAA

total antioxidant activity

TPC

total phenolics content

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sugimoto, K., Gordon, S.P., and Meyerowitz, E.M., Regeneration in plants and animals: dedifferentiation, transdifferentiation, or just differentiation? Trends Cell Biol., 2011, vol. 21, pp. 212–218.CrossRefPubMedGoogle Scholar
  2. 2.
    Reinert, J. and Bajaj, Y.P.S., Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture, New York: Springer-Verlag, 1977.CrossRefGoogle Scholar
  3. 3.
    Gordon, S.P., Chickarmane, V.S., Ohno, C., and Meyerowitz, E.M., Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 16529–16534.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Su, Y.H., Liu, Y.B., and Zhang, X.S., Auxin–cytokinin interaction regulates meristem development, Mol. Plant, 2011, vol. 4, pp. 616–625.PubMedCentralCrossRefPubMedGoogle Scholar
  5. 5.
    Koes, R., Verweij, W., and Quattrocchio, F., Flavonoids: a colourful model for the regulation and evolution of biochemical pathways, Trends Plant Sci., 2005, vol. 10, pp. 236–242.CrossRefPubMedGoogle Scholar
  6. 6.
    Franklin, G. and Dias, A.C.P., Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum, Plant Physiol. Biochem., 2011, vol. 49, pp. 835–842.CrossRefPubMedGoogle Scholar
  7. 7.
    Arnaldos, T.L., Munoz, R., Ferrer, M.A., and Calderon, A.A., Changes in phenol content during strawberry (Fragaria × ananassa, cv. Chandler) callus culture, Physiol. Plant., 2001, vol. 113, pp. 315–322.CrossRefGoogle Scholar
  8. 8.
    Jacobs, M. and Rubery, P.H., Naturally occuring auxin transport regulators, Science, 1988, vol. 241, pp. 346–349.CrossRefPubMedGoogle Scholar
  9. 9.
    Peer, W.A. and Murphy, A.S., Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci., 2007, vol. 12, pp. 556–563.CrossRefPubMedGoogle Scholar
  10. 10.
    Peer, W.A., Blakeslee, J.J., Yang, H., and Murphy, A.S., Seven things we think we know about auxin transport, Mol. Plant, 2011, vol. 4, pp. 487–504.CrossRefPubMedGoogle Scholar
  11. 11.
    Agarwal, M. and Kamal, R., Studies on flavonoid production using in vitro cultures of Momordica charantia L., Ind. J. Biotechnol., 2007, vol. 6, pp. 277–279.Google Scholar
  12. 12.
    Shilpashree, H.P. and Raim, R., In vitro plant regeneration and accumulation of flavonoids in Hypericum mysorense, Int. J. Integr. Biol., 2009, vol. 8, pp. 43–49.Google Scholar
  13. 13.
    Subhashini, Devi, P.S., Satyanarayanam, B., Arundhati, A., and Raghava, Rao, T., Activity of antioxidant enzymes and secondary metabolites during in vitro regeneration of Sterculia urens, Biol. Plant., 2013, vol. 57, pp. 778–782.CrossRefGoogle Scholar
  14. 14.
    Mitrović, A., Janošević, D., Budimir, S., and Bogdanović, Pristov, J., Changes in antioxidative enzymes activities during Tacitus bellus direct shoot organogenesis, Biol. Plant., 2012, vol. 56, pp. 357–361.CrossRefGoogle Scholar
  15. 15.
    Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.CrossRefGoogle Scholar
  16. 16.
    Arnao, M.B., Cano, A., and Acosta, M., Methods to measure the antioxidant activity in plant material. A comparative discussion, Free Radic. Res., 1999, vol. 32, pp. 89–96.CrossRefGoogle Scholar
  17. 17.
    Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Vitic., 1965, vol. 16, pp. 144–158.Google Scholar
  18. 18.
    Kanmegene, G. and Omokolo, D., Changes in phenol content and peroxidase activity during in vitro organogenesis in Xanthosoma sagittifolium L., Plant Growth Regul., 2003, vol. 40, pp. 53–57.CrossRefGoogle Scholar
  19. 19.
    Cheng, Z.H., Wang, L., Sun, W., Zhang, Y., Zhou, C., Sum, Y.H., Li, W., Sun, T.T., Zhao, X.Y., Li, X.G., Cheng, Y., Zhao, Y., Xie, Q., and Zhang, X.S., Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3, Plant Physiol., 2013, vol. 161, pp. 240–251.PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y., and Matsui, H., A large family of class III plant peroxidases, Plant Cell Physiol., 2001, vol. 42, pp. 462–468.CrossRefPubMedGoogle Scholar
  21. 21.
    Cervilla, L.M., Rosales, M.A., Rubio-Wilhelmi, M.M., Sanchez-Rodriguez, E., Blasco, B., Rios, J.J., Romero, L., and Ruiz, J.M., Involvement of lignification and membrane permeability in the tomato root response to boron toxicity, Plant Sci., 2009, vol. 176, pp. 545–552.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. Mitrović
    • 1
    Email author
  • V. Maksimović
    • 1
  • D. Mutavdžić
    • 1
  • J. Bogdanović Pristov
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations