Skip to main content
Log in

Regulatory role of nitric oxide in plants

  • Lectures
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Research performed over the last few years identified nitric oxide (NO) as an intracellular signaling molecule involved in regulation of plant physiological processes at all stages of the life cycle. Nevertheless, some extremely important aspects of NO biology are still far from being clarified. There exist different points of view on NO formation and utilization in plants. The mechanisms of perception and transduction of the NO signal are not yet fully understood, and the origin of specificity underlying coordinated activation of responses to NO remains unresolved. It is reasonable to expect that the deep knowledge of NO functioning in animals may provide some keys to these questions. Such a comparative analysis is a way to reveal similarities and emphasize the differences in the current understanding of the NO role in plants. The present lecture highlights these aspects of NO functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COX:

cytochrome c-oxidase

CuAO:

Cu-amine oxidase

cPTIO:

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide

DAF:

diaminofluorescein

DCF:

dichlorofluorescein

ETC:

electron transport chain

GSNO:

S-nitrosoglutathione

GSNOR:

S-nitroso-glutathione reductase

Ni-NOR:

nitrite-NO reductase

NOS:

NO synthase

NR:

nitrate reductase

nsHb:

non-symbiotic hemoglobins

ROS:

reactive oxygen species

SNP:

sodium nitroprusside

XOR:

xanthine oxidoreductase

sGC:

soluble guanylate cyclase

References

  1. Palmer, R.M., Ferrige, A.G., and Moncada, S., Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, Nature, 1987, vol. 327, pp. 524–526.

    Article  CAS  PubMed  Google Scholar 

  2. Durner, J., Wendehenne, D., and Klessig, D.F., Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADF-ribose, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 10328–10333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C., Nitric oxide functions as a signal in plant disease resistance, Nature, 1998, vol. 394, pp. 585–588.

    Article  CAS  PubMed  Google Scholar 

  4. Marsh, N. and Marsh, A., A short history of nitroglycerine and nitric oxide in pharmacology and physiology, Clin. Exp. Pharmacol. Physiol., 2000, vol. 27, pp. 313–319.

    Article  CAS  PubMed  Google Scholar 

  5. Arnold, W.P., Mittal, C.K., Katsuki, S., and Murad, F., Nitric oxide activates guanylate cyclase and increases guanosine 3′:5′-cyclic monophosphate levels in various tissue preparations, Proc. Natl. Acad. Sci. USA, 1977, vol. 74, pp. 3203–3207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Gryglewski, R.J., Palmer, R.M., and Moncada, S., Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor, Nature, 1986, vol. 320, pp. 454–456.

    Article  CAS  PubMed  Google Scholar 

  7. Ignarro, L.J., Buga, G.M., Wood, K.S., Byrns, R.E., and Chaudhuri, G., Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 9265–9269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Palmer, R.M., Ashton, D.S., and Moncada, S., Vascular endothelial cells synthesize nitric oxide from L-arginine, Nature, 1988, vol. 333, pp. 664–666.

    Article  CAS  PubMed  Google Scholar 

  9. Forstermann, U. and Sessa, W.C., Nitric oxide synthases: regulation and function, Eur. Heart J., 2012, vol. 33, pp. 829–837.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Russwurm, M. and Koesling, D., No activation of guanylyl cyclase, EMBO J., 2004, vol. 23, pp. 4443–4450.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Friebe, A. and Koesling, D., Regulation of nitric oxidesensitive guanylyl cyclase, Circ. Res., 2003, vol. 93, pp. 96–105.

    Article  CAS  PubMed  Google Scholar 

  12. Casteel, D.E., Zhang, T., Zhuang, S., and Pilz, R.B., cGMP-dependent protein kinase anchoring by IRAG regulates its nuclear translocation and transcriptional activity, Cell. Signal., 2008, vol. 20, pp. 1392–1399.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gupta, K.J., Fernie, A.R., Kaiser, W.M., and van Dongen, J.T., On the origins of nitric oxide, Trends Plant Sci., 2011, vol. 16, pp. 160–168.

    Article  CAS  PubMed  Google Scholar 

  14. Foresi, N., Correa-Aragunde, N., Parisi, G., Calo, G., Salerno, G., and Lamattina, L., Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent, Plant Cell, 2010, vol. 22, pp. 3816–3830.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Guo, F.Q., Okamoto, M., and Crawford, M.J., Identification of a plant nitric oxide synthase gene involved in hormonal signaling, Science, 2003, vol. 302, pp. 100–103.

    Article  CAS  PubMed  Google Scholar 

  16. Moreau, M., Lindermayr, C., Durner, J., and Klessig, D.F., NO synthesis and signaling in plants — where do we stand? Physiol. Plant., 2010, vol. 138, pp. 372–383.

    Article  CAS  PubMed  Google Scholar 

  17. Zemojtel, T., Fröhlich, A., Palmieri, M.C., Kolanczyk, M., Mikula, I., Wyrwicz, L.S., Wanker, E.E., Mundlos, S., Vingron, M., Martasek, P., and Durner, J., Plant nitric oxide synthase: a never-ending story? Trends Plant Sci., 2006, vol. 11, pp. 524–525.

    Article  CAS  PubMed  Google Scholar 

  18. Flores-Pérez, U., Sauret-Güeto, S., Gas, E., Jarvis, P., and Rodríguez-Concepción, M., A mutant impaired in the production of plastome-encoded proteins uncovers a mechanism for the homeostasis of isoprenoid biosynthetic enzymes in Arabidopsis plastids, Plant Cell, 2008, vol. 20, pp. 1303–1315.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tun, N.N., Santa-Catarina, C., Begum, T., Silveira, V., Handro, W., Iochevet, E., Floh, S., and Scherer, G.F.E., Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings, Plant Cell Physiol., 2006, vol. 47, pp. 346–354.

    Article  CAS  PubMed  Google Scholar 

  20. Wimalasekera, R., Villar, C., Begum, T., and Scherer, G.F., COPER AMINE OXIDASE1 (CuAO) of Arabidopsis thaliana contributes to abscisic acid- and polyamine-induced nitric oxide biosynthesis and abscisic acid signal transduction, Mol. Plant, 2001, vol. 4, pp. 663–678.

    Article  Google Scholar 

  21. Flores, T., Todd, C.D., Tovar-Mendez, A., Dhanoa, P.K., Correa-Aragunde, N., Hoyos, M.E., Brownfield, D.M., Mullen, R.T., Lamattina, L., and Polacco, J.C., Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development, Plant Physiol., 2008, vol. 147, pp. 1936–1946.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lillo, C., Meyer, C., Lea, U.S., Provan, F., and Oltedal, S., Mechanisms and importance of post-translational regulation of nitrate reductase, J. Exp. Bot., 2004, vol. 55, pp. 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  23. Desikan, R., Griffiths, R., Hancock, J., and Neill, S., A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 16314–16318.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Dordas, C., Hasinoff, B.B., Rivoal, J., and Hill, R.D., Class-1 hemoglobins, nitrate and NO levels in anoxic maize cell-suspension cultures, Planta, 2004, vol. 219, pp. 66–72.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, M.G., Chen, L., Zhang, L.L., and Zhang, W.H., Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis, Plant Physiol., 2009, vol. 151, pp. 755–767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cantrel, C., Vazquez, T., Puyaubert, J., Rezé, N., Lesch, M., Kaiser, W.M., Dutilleul, C., Guillas, I., Zachowski, A., and Baudouin, E., Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana, New Phytol., 2011, vol. 189, pp. 415–427.

    Article  CAS  PubMed  Google Scholar 

  27. Schlicht, M. and Kombrink, E., The role of nitric oxide in the interaction of Arabidopsis thaliana with the biotrophic fungi, Golovinomyces orontii and Erysiphe pisi, Front. Plant Sci., 2013, vol. 4, doi 10.3389/fpls.2013.00351

  28. Rockel, P., Strube, F., Rockel, A., Wildt, J., and Kaiser, W.M., Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro, J. Exp. Bot., 2002, vol. 53, pp. 103–110.

    Article  CAS  PubMed  Google Scholar 

  29. Stöhr, C., Strube, F., Marx, G., Ullrich, W.R., and Rockel, P., A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite, Planta, 2001, vol. 212, pp. 835–841.

    Article  PubMed  Google Scholar 

  30. Gupta, K.J. and Kaiser, W.M., Production and scavenging of nitric oxide by barley root mitochondria, Plant Cell Physiol., 2010, vol. 51, pp. 576–584.

    Article  CAS  PubMed  Google Scholar 

  31. Stoimenova, M., Igamberdiev, A.U., Gupta, K.J., and Hill, R.D., Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria, Planta, 2007, vol. 226, pp. 465–474.

    Article  CAS  PubMed  Google Scholar 

  32. Cantu-Medellin, N. and Kelley, E.E., Xanthine oxidoreductase-catalyzed reduction of nitrite to nitric oxide: insights regarding where, when and how, Nitric Oxide, 2013, vol. 34, pp. 19–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Corpas, F.J., Palma, J.M., Sandalio, L.M., Valderrama, R., Barroso, J.B., and del Rio, L.A., Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves, J. Plant Physiol., 2008, vol. 165, pp. 1319–1330.

    Article  CAS  PubMed  Google Scholar 

  34. Tischner, R., Galli, M., Heimer, Y.M., Bielefeld, S., Okamoto, M., Mack, A., and Crawford, N.M., Interference with the citrulline-based nitric oxide synthase assay by argininosuccinate lyase activity in Arabidopsis extracts, FASEB J., 2007, vol. 274, pp. 4238–4245.

    CAS  Google Scholar 

  35. Hill, R.D., Non-symbiotic haemoglobins: what’s happening beyond nitric oxide scavenging? AoB PLANTS, 2012, doi 10.1093/aobpla/pls004

    Google Scholar 

  36. Igamberdiev, A.U., Bykova, N.V., and Hill, R.D., Scavenging of nitric oxide by barley hemoglobin is facilitated by a monodehydroascorbate reductase mediated ascorbate reduction of methemoglobin, Planta, 2006, vol. 223, pp. 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  37. Sarkar, T., Biswas, P., Ghosh, S.K., and Ghosh, S., Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease jute: complexity of the interplay between necrotroph-host plant interactions, PLoS ONE, 2014, vol. 9, doi 10.1371/journal.pone.0107348

  38. Boccara, M., Mills, C.E., Zeier, J., Anzi, Ch., Lamb, Ch., Poole, R.K., and Delledonne, M., Flavohaemoglobin HmpX from Erwinia chrysanthemi confers nitrosative stress tolerance and affects the plant hypersensitive reaction by intercepting nitric oxide produced by the host, Plant J., 2005, vol. 43, pp. 226–237.

    Article  CAS  PubMed  Google Scholar 

  39. Garcia-Mata, C. and Lamattina, L., Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress, Plant Physiol., 2001, vol. 126, pp. 1196–1204.

    Article  CAS  PubMed  Google Scholar 

  40. Sun, Ch., Lu, L., Liu, L., Liu, W., Yu, Y., Liu, X., Hu, Y., Jin, Ch., and Lin, X., Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum), New Phytol., 2014, vol. 201, pp. 1240–1250.

    Article  CAS  PubMed  Google Scholar 

  41. Correa-Aragunde, N., Graziano, M., and Lamattina, L., Nitric oxide plays a central role in determining lateral root development in tomato, Planta, 2004, vol. 218, pp. 900–905.

    Article  CAS  PubMed  Google Scholar 

  42. Del Giudice, J., Cam, Y., Damiani, I., Fung-Chat, F., Meilhoc, E., Bruand, C., Brouquisse, R., Puppo, A., and Boscari, A., Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis, New Phytol., 2011, vol. 191, pp. 405–417.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Serrano, I., Romero-Puertas, M.C., Rodriguez-Serrano, M., Sandalio, L.M., and Olmedilla, A., Peroxynitrite mediates programmed cell death both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.), J. Exp. Bot., 2012, vol. 63, pp. 1479–1493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Beligni, M.V. and Lamattina, L., Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants, Planta, 2000, vol. 210, pp. 215–221.

    Article  CAS  PubMed  Google Scholar 

  45. Mur, L.A.J., Mandon, J., Persijn, S., Cristescu, S.M., Moshkov, I.E., Novikova, G.V., Hall, M.A., Harren, F.J.M., Hebelstrup, K., and Gupta, K.J., Nitric oxide in plants: an assessment of the current state of knowledge, AoB PLANTS, 2013, vol. 5, doi 10.1093/aobpla/pls052

  46. Mur, L.A.J., Mandon, J., Cristescu, S.M., Harren, F.J.M., and Prats, E., Methods of nitric oxide detection in plants: a commentary, Plant Sci., 2011, vol. 181, pp. 509–519.

    Article  CAS  PubMed  Google Scholar 

  47. Vitecek, J., Reinohl, V., and Jones, R.L., Measuring NO production by plant tissues and suspension cultured cells, Mol. Plant, 2008, vol. 1, pp. 270–284.

    Article  CAS  PubMed  Google Scholar 

  48. Cristescu, S.M., Persijn, S.T., te Lintel, Hekkert, S., and Harren, F.J.M., Laser-based system for trace gas detection in life sciences, Appl. Phys. B, 2008, vol. 92, pp. 343–349.

    Article  CAS  Google Scholar 

  49. Sikora, A., Zielonka, J., Lopez, M., Joseph, J., and Kalyanaraman, B., Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite, Free Radic. Biol. Med., 2009, vol. 47, pp. 1401–1407.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Setsukinai, K., Urano, Y., Kakinuma, K., Majima, H.J., and Nagano, T., Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species, J. Biol. Chem., 2003, vol. 278, pp. 3170–3175.

    Article  CAS  PubMed  Google Scholar 

  51. D’Alessandro, S., Posocco, B., Costa, A., Zahariou, G., Schiavo, F., Carbonera, D., and Zottini, M., Limits in the use of cPTIO as nitric oxide scavenger and EPR probe in plant cells and seedlings, Front. Plant Sci., 2013, vol. 4, doi 10.3389/fpls.2013.00340

  52. Miller, M.R. and Megson, I.L., Recent developments in nitric oxide donor drugs, Brit. J. Pharmacol., 2007, vol. 151, pp. 305–321.

    Article  CAS  Google Scholar 

  53. Floryszak-Wieczorek, J., Milczarek, G., Arasimowicz, M., and Ciszewski, A., Do nitric oxide donors mimic endogenous NO-related response in plants? Planta, 2006, vol. 224, pp. 1363–1372.

    Article  CAS  PubMed  Google Scholar 

  54. Merchante, C., Alonso, J.M., and Stepanova, A.N., Ethylene signaling: simple ligand, complex regulation, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 554–560.

    Article  CAS  PubMed  Google Scholar 

  55. Ludidi, N. and Gehring, C., Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana, J. Biol. Chem., 2003, vol. 278, pp. 6490–6494.

    Article  CAS  PubMed  Google Scholar 

  56. Astier, J. and Lindermayr, C., Nitric oxide-dependent posttranslational modification in plants: an update, Int. J. Mol. Sci., 2012, vol. 13, pp. 15193–15208.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Lozano-Juste, J., Colom-Moreno, R., and Leon, J., In vivo protein tyrosine nitration in Arabidopsis thaliana, J. Exp. Bot., 2011, vol. 62, pp. 3501–3517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Marozkina, N.V. and Gaston, B., S-Nitrosylation signaling regulates cellular protein interactions, Biochim. Biophys. Acta, 2012, vol. 1820, pp. 722–729.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Astier, J., Kulik, A., Koen, E., Besson-Bard, A., Bourque, S., Jeandroz, S., Lamotte, O., and Wendehenne, D., Protein S-nitrosylation: what’s going on in plants? Free Radic. Biol. Med., 2012, vol. 53, pp. 1101–1110.

    Article  CAS  PubMed  Google Scholar 

  60. Corpas, F.J., Palma, J.M., del Rio, L.A., and Barroso, J.B., Protein tyrosine nitration in higher plants grown under natural and stress conditions, Front. Plant Sci., 2013, vol. 4, doi 10.3389/fpls.2013.00029

  61. Ischiropoulus, H., Protein tyrosine nitration — an update, Arch. Biochem. Biophys., 2009, vol. 484, pp. 117–121.

    Article  Google Scholar 

  62. Abello, N., Kerstjens, H.A.M., Postma, D.S., and Bischoff, R., Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins, J. Proteome Res., 2009, vol. 8, pp. 3222–3238.

    Article  CAS  PubMed  Google Scholar 

  63. Kato, H., Takemoto, D., and Kawakita, K., Proteomic analysis of S-nitrosylated proteins in potato plant, Physiol. Plant., 2013, vol. 148, pp. 371–386.

    Article  CAS  PubMed  Google Scholar 

  64. Begara-Morales, J.C., Chaki, M., Sanchez-Calvo, B., Mata-Pérez, C., Leterrier, M., Palma, J.M., Barroso, J.B., and Corpas, F.J., Protein tyrosine nitration in pea roots during development and senescence, J. Exp. Bot., 2013, vol. 64, pp. 1121–1134.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Baudouin, E., The language of nitric oxide signaling, Plant Biol., 2011, vol. 13, pp. 233–242.

    Article  CAS  PubMed  Google Scholar 

  66. Spadaro, D., Yun, B.W., Spoel, S.H., Chu, C., Wang, Y.Q., and Loake, G.J., The redox switch: dynamic regulation of protein function by cysteine modifications, Physiol. Plant., 2010, vol. 138, pp. 360–371.

    Article  CAS  PubMed  Google Scholar 

  67. Beligni, M.V., Fath, A., Bethke, P.C., Lamattina, L., and Jones, R.L., Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers, Plant Physiol., 2002, vol. 129, pp. 1642–1650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wang, Y., Loake, G.J., and Chu, C., Cross-talk of nitric oxide and reactive oxygen species in plant programmed cell death, Front. Plant Sci., 2013, vol. 4, doi 10.3389/fpls.2013.00314

  69. Yang, F., Ding, F., Duan, X., Zhang, J., Li, X., and Yang, Y., ROS generation and proline metabolism in calli of halophyte Nitraria tangutorum Bobr. to sodium nitroprusside treatment, Protoplasma, 2014, vol. 251, pp. 71–80.

    Article  CAS  PubMed  Google Scholar 

  70. Lin, C.C., Jih, P.J., Lin, H.H., Lin, J.S., Chang, L.L., Shen, Y.H., and Jeng, S.T., Nitric oxide activates superoxide dismutase and ascorbate peroxidase to repress the cell death induced by wounding, Plant Mol. Biol., 2011, vol. 77, pp. 235–249.

    Article  CAS  PubMed  Google Scholar 

  71. Grob, F., Durner, J., and Gaupels, F., Nitric oxide, antioxidants and prooxidants in plant defence responses, Front. Plant Sci., 2013, doi 10.3389/fpls.2013.00419

    Google Scholar 

  72. Molassiotis, A. and Fotopoulos, V., Oxidative and nitrosative signaling in plants. Two branches in the same tree? Plant Signal. Behav., 2011, vol. 6, pp. 210–214.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Chaki, M., Valderrama, R., Fernandez-Ocana, A.M., Carreras, A., Lopez-Jaramillo, J., Luque, F., Palma, J.M., Pedrajas, J.R., Begara-Morales, J.C., Sanchez-Calvo, B., Gomez-Rodriguez, M.V., Corpas, F.J., and Barroso, J.B., Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls, J. Exp. Bot., 2009, vol. 60, pp. 4221–4234.

    Article  CAS  PubMed  Google Scholar 

  74. Fares, A., Rossignol, M., and Peltier, J.B., Proteomics investigation of endogenous S-nitrosylation in Arabidopsis, Biochem. Biophys. Res. Commun., 2011, vol. 416, pp. 331–336.

    Article  CAS  PubMed  Google Scholar 

  75. Begara-Morales, J.C., Sanchez-Calvo, B., Chaki, M., Valderrama, R., Mata-Pérez, C., Lopez-Jaramillo, J., Padilla, M.N., Carreras, A., Corpas, F.J., and Barroso, J.B., Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation, J. Exp. Bot., 2014, vol. 65, pp. 527–538.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Freschi, L., Nitric oxide and phytohormone interactions: current status and perspectives, Front. Plant Sci., 2013, vol. 4, doi 10.3389/fpls.2013.00398

  77. Shen, Q., Wang, Y., Tian, H., and Guo, F., Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis, Mol. Plant, 2013, vol. 6, pp. 1214–1225.

    Article  CAS  PubMed  Google Scholar 

  78. Liu, W.Z., Kong, D.D., Gu, X.X., Gao, H.B., Wang, J.Z., Xia, M., Gao, Q., Tian, L.L., Xu, Z.H., Bao, F., Hu, Y., Ye, N.S., Pei, Z.M., and He, Y.K., Cytokinins can act as suppressors of nitric oxide in Arabidopsis, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 41548–41553.

    Google Scholar 

  79. Feng, J., Wang, C., Chen, Q., Chen, H., Ren, B., Li, X., and Zuo, J., S-Nitrosylation of phosphotransfer proteins represses cytokinin signaling, Nat. Commun., 2013, vol. 4, doi 10.1038/ncomms2541

  80. Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., and Neill, S.J., ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis, Plant J., 2006, vol. 45, pp. 113–122.

    Article  CAS  PubMed  Google Scholar 

  81. Liu, Y., Shi, L., Ye, N., Liu, R., Jia, W., and Zhang, J., Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis, New Phytol., 2009, vol. 183, pp. 1030–1042.

    Article  CAS  PubMed  Google Scholar 

  82. Pagnussat, G.C., Simontacchi, M., Puntarulo, S., and Lamattina, L., Nitric oxide is required for root organogenesis, Plant Physiol., 2002, vol. 129, pp. 954–956.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Ötvös, K., Pasternak, T.P., Miskolczi, P., Domoki, M., Dorjgotov, D., Szücs, A., Bottka, S., Dudits, D., and Fehér, A., Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures, Plant J., 2005, vol. 43, pp. 849–860.

    Article  PubMed  Google Scholar 

  84. Fernandez-Marcos, M., Sanza, L., Lewis, D.R., Muday, G.K., and Lorenzo, O., Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 18506–18511.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Terrile, M.C., París, R., Calderón-Villalobos, L.I.A., Iglesias, M.J., Lamattina, L., Estelle, M., and Casalongué, C.A., Nitric oxide influences auxin signaling trough S-nitrosylation of the Arabidopsis TRANSPORT INHIBITOR RESPONSE1 auxin receptor, Plant J., 2012, vol. 70, pp. 492–500.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Lozano-Juste, J. and Leon, J., Nitric oxide regulates DELLA content and PIF expression to promote photomorphogenesis in Arabidopsis, Plant Physiol., 2011, vol. 156, pp. 1410–1423.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Flores, F.B., Sanchez-Bel, P., Valdenegro, M., Romojaro, F., Martinez-Madrid, M.C., and Egea, M.I., Effects of a pretreatment with nitric oxide on peach (Prunus persica L.) storage at room temperature, Eur. Food Res. Technol., 2008, vol. 227, pp. 1599–1611.

    Article  CAS  Google Scholar 

  88. Lindermayr, C., Saalbach, G., Bahnweg, G., and Durner, J., Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation, J. Biol. Chem., 2006, vol. 281, pp. 4285–4291.

    Article  CAS  PubMed  Google Scholar 

  89. Gibbs, D.J., Md Isa, N., Movahedi, M., Lozano-Juste, J., Mendiondo, G.M., Berckhan, S., Marin-de la Rosa, N., Conde, J.V., Correia, C.S., Pearce, S.P., Bassel, G.W., Hamali, B., Talloji P., Tomé, D.F.A., Coego, A., Beynon, J., Alabadí, D., Bachmair, A., Leon, J., Gray, J.E., Theodoulou, F.L., and Holdsworth, M.J., Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors, Mol. Cell, 2014, vol. 53, pp. 369–379.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Varshavsky, A., The N-end rule pathway and regulation by proteolysis, Protein Sci., 2011, vol. 20, pp. 1298–1345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Novikova.

Additional information

Original Russian Text © A.S. Mamaeva, A.A. Fomenkov, A.V. Nosov, I.E. Moshkov, L.A.J. Mur, M.A. Hall, G.V. Novikova, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 4, pp. 459–473.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamaeva, A.S., Fomenkov, A.A., Nosov, A.V. et al. Regulatory role of nitric oxide in plants. Russ J Plant Physiol 62, 427–440 (2015). https://doi.org/10.1134/S1021443715040135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715040135

Keywords

Navigation