Skip to main content
Log in

Change in growth and physiological parameters in soybean seedlings in response to toxic action of copper

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Soybean (Glycine max l., cv. Alina) seedlings grown for 5 days on medium containing 1.5–50 μm CuSO4 displayed inhibition of their growth and shoot and root system biomass accumulation, and this effect correlated with copper ions’ concentration. The content of chlorophyll in leaves remained unchanged, while the total content of soluble carbohydrates per 1 g fresh leaf and root mass increased. The inhibition of root growth appeared to be marked at a lower concentration of copper ions in the medium as compared to that intensified the entering into root cells of Evans blue, the known indicator of cell viability. Copper ion excess in the medium did not prevent the process of lateral root initiation and their exit on the primary root surface but significantly suppressed their subsequent growth. It was shown that the Cu-stress resulted in changes in filament actin (F-actin) content in the root cells of the seedlings. F-actin amount increased after 20 h growth of the plants on the medium with 10 μM CuSO4, whereas on the medium containing 50 μM CuSO4 F-actin content in root tip cells dropped considerably as compared to the control. The content of F-actin in the root apex became equal to that in the basal part of the root that completed growth. These results allowed us to suggest that fast Cu-stress-induced retardation of soybean seedling growth is likely to be associated with disturbance of organization and functioning of the actin cytoskeleton (AC) leading to inhibition of cell and organs growth and changes in architecture of the root system due to damage of the mechanism of auxin transport and distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

actin cytoskeleton

F-actin:

polymeric, filament actin

HM:

heavy metal

References

  1. Yruela, I., Copper in plants: acquisition, transport and interactions, Funct. Plant Biol., 2009, vol. 36, pp. 409–430.

    Article  CAS  Google Scholar 

  2. Hall, J.L., Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot., 2002, vol. 53, pp. 1–11.

    Article  CAS  PubMed  Google Scholar 

  3. Potters, G., Pasternak, T.P., Guisez, Y., Palme, K.J., and Jansen, M.A.K., Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci., 2007, vol. 12, pp. 98–105.

    Article  CAS  PubMed  Google Scholar 

  4. Kulikova, A.L., Kuznetsova, N.A., and Kholodova, V.P., Effect of copper excess in environment on soybean root viability and morphology, Russ. J. Plant Physiol., 2011, vol. 58, pp. 844–850.

    Article  Google Scholar 

  5. Feigl, G., Kumar, D., Lehotai, N., Tugyi, N., Molnár, A., Ordög, A., Scepesi, A., Gémes, K., Laskay, G., Erdei, L., and Kolbert, S., Physiological and morphological responses of the root system of Indian mustard (Brassica juncea L. Czern.) and rapeseed (Brassica napus L.) to copper stress, Ecotoxicol. Environ. Safety, 2013, vol. 94, pp. 179–189.

    Article  CAS  PubMed  Google Scholar 

  6. Hussey, P.J., Ketelaar, T., and Deeks, M.J., Control of the actin cytoskeleton in plant cell growth, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 109–125.

    Article  CAS  PubMed  Google Scholar 

  7. Henty-Ridilla, J.L., Li, J., Blanchoin, L., and Staiger, C.J., Actin dynamics in the cortical array of plant cells, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 678–687.

    Article  CAS  PubMed  Google Scholar 

  8. Ueda, T. and Nakano, A., Vesicular traffic: an integral part of plant life, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 513–517.

    Article  CAS  PubMed  Google Scholar 

  9. Geldner, N., Friml, J., Stierhof, Y.D., Jürgens, G., and Palme, K., Auxin-transport inhibitors block PIN1 cycling and vesicle trafficking, Nature, 2001, vol. 413, pp. 425–428.

    Article  CAS  PubMed  Google Scholar 

  10. Smith, S. and de Smet, I., Root system architecture: insights from Arabidopsis and cereal crops, Philos. Trans. R. Soc. Lond. B, 2012, vol. 367, pp. 1441–1452.

    Article  CAS  Google Scholar 

  11. Blancaflor, E.B., Jones, D.L., and Gilroy, S., Alternation in the cytoskeleton accompany aluminiuminduced growth inhibition and morphological changes in primary roots of maize, Plant Physiol., 1998, vol. 118, pp. 159–172.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ahad, A. and Nick, P., Actin is bundled in activationtagged tobacco mutant that tolerate aluminum, Planta, 2007, vol. 225, pp. 451–458.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan, H.M., Xu, H.H., Liu, W.C., and Lu, Y.T., Copper regulates primary root elongation through PIN1-mediated auxin redistribution, Plant Cell Physiol., 2013, vol. 54, pp. 766–778.

    Article  CAS  PubMed  Google Scholar 

  14. Ivanchenko, M.G., Coffeen, W.C., Lomax, T.L., and Dubrovsky, J.G., Mutations in the Diageotropica (Dgt) gene uncouple patterned cell division during lateral root initiation from proliferative cell division in the pericycle, Plant J., 2006, vol. 46, pp. 436–447.

    Article  CAS  PubMed  Google Scholar 

  15. Shlyk, A.A., Determination of chlorophyll and carotenoids in extracts of green leaves, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, pp. 154–170.

    Google Scholar 

  16. Turkina, M.V. and Sokolova, S.V., Methods for monosaccharides and oligosaccharides determination, Biokhimicheskie metody v fiziologii rastenii (Biochemical Methods in Plant Physiology), Pavlinova, O.A., Ed., Moscow: Nauka, 1971, pp. 7–34.

    Google Scholar 

  17. Zelinová, V., Haluková, L., Huttová, J., Illé, P., Mistrík, I., Valentoviová, K., and Tamás, L., Short-term aluminium-induced changes in barley root tips, Protoplasma, 2011, vol. 248, pp. 523–530.

    Article  PubMed  Google Scholar 

  18. Esen, A., A simple method for quantitative, semiquantitative, and qualitative assay of protein, Anal. Biochem., 1978, vol. 89, pp. 264–273.

    Article  CAS  PubMed  Google Scholar 

  19. Madejon, P., Ramirez-Benifez, J.E., Corrales, I., Barselo, J., and Poschenrieder, C., Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance, Environ. Exp. Bot., 2009, vol. 67, pp. 415–420.

    Article  CAS  Google Scholar 

  20. Liu, Q., Yang, J.L., He, L.S., Li, Y.Y., and Zheng, S.J., Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale, Biol. Plant., 2008, vol. 52, pp. 87–92.

    Article  CAS  Google Scholar 

  21. Maksymiec, W. and Baszynski, T., Different susceptibility of runner bean plants to excess copper as a function of the growth stages of primary leaves, J. Plant Physiol., 1996, vol. 149, pp. 217–221.

    Article  CAS  Google Scholar 

  22. Alaoui-Sossé, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., and Badot, P.M., Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents, Plant Sci., 2004, vol. 166, pp. 1213–1218.

    Article  Google Scholar 

  23. Moya, J.L., Ros, R., and Picazo, I., Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants, Photosynth. Res., 1993, vol. 36, pp. 75–80.

    Article  CAS  PubMed  Google Scholar 

  24. Doncheva, S., Amenós, M., Poschenrieder, C., and Barceló, J., Root cell patterning: a primary target for aluminium toxicity in maize, J. Exp. Bot., 2005, vol. 56, pp. 1213–1220.

    Article  CAS  PubMed  Google Scholar 

  25. Pasternak, T., Rudas, V., Potters, G., and Jansen, M.A.K., Morphogenic effects of abiotic stress: reorientation of growth in Arabidopsis thaliana seedlings, Environ. Exp. Bot., 2005, vol. 53, pp. 299–314.

    Article  Google Scholar 

  26. Hohenberger, P., Eing, C., Straessner, R., Durst, S., Frey, W., and Nick, P., Plant actin controls membrane permeability, Biochim. Biophys. Acta, 2011, vol. 1808, pp. 2304–2312.

    Article  CAS  PubMed  Google Scholar 

  27. Baluka, F., Jasik, J., Edelmann, H.G., Salajová, T., and Volkmann, D., Latrunculin B-induced plant dwarfism: plant cell elongation is F-actin-dependent, Dev. Biol., 2001, vol. 231, pp. 113–124.

    Article  Google Scholar 

  28. Fan, J.L., Wei, X.Z., Wan, L.C., Zhang, L.Y., Zhao, X.Q., Liu, W.Z., Hao, H.Q., and Zhang, H.Y., Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking, J. Plant Physiol., 2011, vol. 168, pp. 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  29. Sheng, X., Zhang, S., Jiang, L., Li, K., Gao, Y., and Li, X., Lead stress disrupts the cytoskeleton organization and cell wall construction during Picea wilsonii pollen germination and tube growth, Biol. Trace Elem. Res., 2012, vol. 146, pp. 86–93.

    Article  CAS  PubMed  Google Scholar 

  30. Amenós, M., Corrales, I., Pochenrieder, C., Illés, P., Baluška, F., and Barceló, J., Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance, Plant Cell Physiol., 2009, vol. 50, pp. 528–540.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kulikova.

Additional information

Original Russian Text © A.L. Kulikova, N.A. Kuznetsova, N.A. Burmistrova, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 4, pp. 488–498.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, A.L., Kuznetsova, N.A. & Burmistrova, N.A. Change in growth and physiological parameters in soybean seedlings in response to toxic action of copper. Russ J Plant Physiol 62, 455–464 (2015). https://doi.org/10.1134/S1021443715040111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715040111

Keywords