Skip to main content
Log in

Effects of NO-Status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

In order to determine the role of nitric oxide (NO) as a potential mediator in the induction of the antioxidant system, effects of the following treatments on the activity of antioxidant enzymes in roots of etiolated wheat (Triticum aestivum L.) seedlings were investigated: a scavenger of nitric oxide, 100 µM PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide); an inhibitor of the enzyme similar to animal NO synthase, 2 mM L-NAME (NG-nitro-L-arginine methyl ester); an NO donor, 2 mM sodium nitroprusside (SNP); a 1-min heat hardening at 42°C; and 10 mM hydrogen peroxide. The activities of superoxide dismutase (SOD), catalase, and guaiacol peroxidase increased under the influence of PTIO and L-NAME. A similar effect was caused by the treatment with SNP and heat hardening; the increased activities of SOD and catalase were observed under the influence of hydrogen peroxide. The pretreatment of intact seedling roots with PTIO and L-NAME did not significantly alter the influence of heat hardening and hydrogen peroxide on the activity of studied enzymes. It is concluded that both the increase and decrease in intracellular NO content can induce the enzymatic antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSP:

heat shock proteins

L-NAME:

NG-nitro-L-arginine methyl ester, an inhibitor of NO synthase

PTIO:

2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, NO scavenger

SNP:

sodium nitroprusside, NO donor

SOD:

superoxide dismutase

References

  1. Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, I., Nitric oxide, stomatal closure and abiotic stress, J. Exp. Bot., 2008, vol. 59, pp. 165–176.

    Article  CAS  PubMed  Google Scholar 

  2. Siddiqui, M.H., Al-Whaibi, M.H., and Basalah, M.O., Role of nitric oxide in tolerance of plants to abiotic stress, Protoplasma, 2011, vol. 248, pp. 447–455.

    Article  CAS  PubMed  Google Scholar 

  3. Ziogas, V., Tanou, G., Filippou, P., Diamantidis, G., Vasilakakis, M., Fotopoulos, V., and Molassiotis, A., Nitrosative responses in citrus plants exposed to six abiotic stress conditions, Plant Physiol. Biochem., 2013, vol. 68, pp. 118–126.

    Article  CAS  PubMed  Google Scholar 

  4. Song, L., Ding, W., Zhao, M., Sun, B., and Zhang, L., Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed, Plant Sci., 2006, vol. 171, pp. 449–458.

    Article  CAS  PubMed  Google Scholar 

  5. Song, L., Zhao, H., and Hou, M., Involvement of nitric oxide in acquired thermotolerance of rice seedlings, Russ. J. Plant Physiol., 2013, vol. 60, pp. 785–790.

    Article  CAS  Google Scholar 

  6. Karpets, Yu.V., Kolupaev, Yu.E., and Vayner, A.A., Functional interaction between nitric oxide and hydrogen peroxide during formation of wheat seedling induced heat resistance, Russ. J. Plant Physiol., 2015, vol. 62, pp. 65–70.

    Article  CAS  Google Scholar 

  7. Uchida, A., Jagendorf, A.T., Hibino, T., Takabe, T., and Takabe, T., Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice, Plant Sci., 2002, vol. 163, pp. 515–523.

    Article  CAS  Google Scholar 

  8. Karpets, Yu.V., Kolupaev, Yu.E., and Yastreb, T.O., Effect of sodium nitroprusside on heat resistance of wheat coleoptiles: dependence on the formation and scavenging of reactive oxygen species, Russ. J. Plant Physiol., 2011, vol. 58, pp. 1027–1033.

    Article  CAS  Google Scholar 

  9. Xu, M.J., Dong, J.F., and Zhang, X.B., Signal interaction between nitric oxide and hydrogen peroxide in heat shock-induced hypericin production of Hypericum perforatum suspension cells, Sci. China. Ser. C: Life Sci., 2008, vol. 51, pp. 676–686.

    Article  CAS  Google Scholar 

  10. Kolupaev, Yu.E., Oboznyi, A.I., and Shvidenko, N.V., Role of hydrogen peroxide in generation of a signal inducing heat tolerance of wheat seedlings, Russ. J. Plan Physiol., 2013, vol. 60, pp. 227–234.

    Article  CAS  Google Scholar 

  11. Kolupaev, Yu.E. and Karpets, Yu.V., Oxidative stress and oxidative system status of wheat coleoptiles induced by hydrogen peroxide and heating, Vísn. Kharkív. Nats. Agrarn. Univ., Ser. B., 2008, no. 2 (14), pp. 42–52.

    Google Scholar 

  12. Alscher, R.G., Erturk, N., and Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants, J. Exp. Bot., 2002, vol. 53, pp. 1331–1341.

    Article  CAS  PubMed  Google Scholar 

  13. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  14. Hernandez-Ruiz, J., Rodriguez-Lopez, J.N., Garcia-Canovas, F., Acosta, M., and Arnao, M.B., Characterization of isoperoxidase-B2 inactivation in etiolated Lupinus albus hypocotyls, Biochim. Biophys. Acta, 2000, vol. 1478, pp. 78–88.

    Article  CAS  PubMed  Google Scholar 

  15. Mika, A., Minibaeva, F., Beckett, R., and Luthjie, S., Induced generation and detoxification of active oxygen species, Phytochem. Rev., 2004, vol. 3, pp. 173–193.

    Article  CAS  Google Scholar 

  16. Akaike, T., Yoshida, M., Miyamoto, Y., Sato, K., Kohno, M., Sasamoto, K., Miyazaki, K., Ueda, S., and Maeda, H., Antagonistic action of imidazolineoxyl Noxides against endothelium-derived relaxing factor/NO through a radical reaction, Biochemistry, 1993, vol. 32, pp. 827–832.

    Article  CAS  PubMed  Google Scholar 

  17. Del Río, L.A., Corpas, F.J., Sandalio, L.M., Palma, J.M., and Barroso, J.B., Plant peroxisomes, reactive oxygen metabolism and nitric oxide, IUBMB Life, 2003, vol. 55, pp. 71–81.

    Article  PubMed  Google Scholar 

  18. Abu-Soud, H.M. and Hazen, S.L., Nitric oxide is a physiological substrate for mammalian peroxidases, J. Biol. Chem., 2000, vol. 275, pp. 37 524–37 532.

    Article  CAS  Google Scholar 

  19. Clark, D., Durner, J., Navarre, D.A., and Klessig, D.F., Nitric oxide inhibition of tobacco catalase and ascor bate peroxidase, Mol. Plant–Microbe Interact., 2000, vol. 13, pp. 1380–1384.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, H., Huang, J., Liang, W., Liang, X., and Bi, Y., Involvement of putrescine and nitric oxide in aluminum tolerance by modulating citrate secretion from roots of red kidney bean, Plant Soil, 2013, vol. 366, pp. 479–490.

    Article  CAS  Google Scholar 

  21. Vital, S.A., Fowler, R.W., Virgen, A., Gossett, D.R., Banks, S.W., and Rodriguez, J., Opposing roles for superoxide and nitric oxide in the NaCl stress-induced up-regulation of antioxidant enzyme activity in cotton callus tissue, Environ. Exp. Bot., 2008, vol. 62, pp. 60–68.

    Article  CAS  Google Scholar 

  22. Zhou, B., Guo, Z., Xing, J., and Huang, B., Nitric oxide is involved in abscisic acidinduced antioxidant activities in Stylosanthes guianensis, J. Exp. Bot., 2005, vol. 56, pp. 3223–3228.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, L., Zhou, S., Xuan, Y., Sun, M., and Zhao, L., Protective effect of nitric oxide against oxidative damage in Arabidopsis leaves under ultraviolet-B irradiation, Plant Soil, 2013, vol. 366, pp. 479–490.

    Article  Google Scholar 

  24. Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., and Yannarelli, G.G., Nitric oxide synthase-like dependent NO production enhances heme oxygenase upregulation in ultravio-let-B-irradiated soybean plants, Phytochemistry, 2010, vol. 71, pp. 1700–1707.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, H.H., Huang, J.J., and Bi, Y.R., Nitrate reductase-dependent nitric oxide production is involved in aluminum tolerance in red kidney bean roots, Plant Sci., 2010, vol. 179, pp. 281–288.

    Article  CAS  Google Scholar 

  26. Qiu, Z.B., Guo, J.L., Zhang, M.M., Lei, M.Y., and Li, Z.L., Nitric oxide acts as a signal molecule in microwave pretreatment induced cadmium tolerance in wheat seedlings, Acta Physiol. Plant., 2013, vol. 35, pp. 65–73.

    Article  CAS  Google Scholar 

  27. Talukdar, D., Arsenic-induced oxidative stress in the common bean legume, Phaseolus vulgaris L., seedlings and its amelioration by exogenous nitric oxide, Physiol. Mol. Biol. Plants, 2013, vol. 19, pp. 69–79.

    CAS  Google Scholar 

  28. Dubovskaya, L.V., Kolesneva, E.V., Knyazev, D.M., and Volotovskii, I.D., Protective role of nitric oxide during hydrogen peroxide-induced oxidative stress in tobacco plants, Russ. J. Plant Physiol., 2007, vol. 54, pp. 755–762.

    Article  CAS  Google Scholar 

  29. Baudouin, E., The language of nitric oxide signalling, Plant Biol., 2011, vol. 13, pp. 233–242.

    Article  CAS  PubMed  Google Scholar 

  30. Lamotte, O., Guold, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., Durner, J., Pugin, A., and Wendehenne, D., Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein, Plant Physiol., 2004, vol. 135, pp. 516–529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Karpets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpets, Y.V., Kolupaev, Y.E., Yastreb, T.O. et al. Effects of NO-Status modification, heat hardening, and hydrogen peroxide on the activity of antioxidant enzymes in wheat seedlings. Russ J Plant Physiol 62, 292–298 (2015). https://doi.org/10.1134/S1021443715030097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715030097

Keywords

Navigation