Skip to main content
Log in

Possibilities and limitations of non-destructive monitoring of the unicellular green microalgae (Chlorophyta) in the course of balanced growth

  • Methods
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Timely information about basic growth parameters, such as dry weight, cell number, and pigment (chlorophyll and carotenoid) content is of importance for the evaluation of physiological conditions and growth kinetics of microalgal suspension cultures. The possibility of non-destructive determination of these parameters using the optical density (total light attenuation due to light scattering and absorption by the microalgal cells and the pigments contained therein) spectra of the cell suspension was shown for unicellular green algae Ettlia carotinosa Komarek and Haematococcus pluvialis Flotow (Chlorophyceae). Estimation of the pigment content of morphologically heterogeneous cultures (such as H. pluvialis) with a reasonable accuracy required the light-scattering compensation of the measured extinction spectra. On the other hand, the scattering signal is useful for dry weight and cell density estimation (in the cultures with insignificant morphological heterogeneity). The spectral regions sensitive to the variation in the target culture parameters was found, and the spectral indices linearly correlated with the latter were constructed. The possibilities and limitations of the optical methods suitable for non-destructive monitoring of the microalgal cultures in the course of their balanced growth and the potential of the developed approach for microalga biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Car:

carotenoid(s)

MA:

microalga(e)

OD:

optical density

DW:

dry weight

Chl:

chlorophyll(s)

NIR:

near infrared region

RMSE:

the root mean square error

References

  1. Lv, H., Qu, G., Qi, X., Lu, L., Tian, C., and Ma, Y., Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation, Genomics, 2013, vol. 101, pp. 229–237.

    Article  CAS  PubMed  Google Scholar 

  2. Zittelli, G.C., Biondi, N., Rodolfi, L., and Tredici, M.R., Photobioreactors for mass production of microalgae, Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Richmond, A. and Hu, Q., Eds., Oxford: Wiley-Blackwell, 2013, pp. 225–266.

    Chapter  Google Scholar 

  3. Tsoglin, L.N. and Pronina, N.A., Biotekhnologiya mikrovodoroslei (Microalgal Biotechnology), Moscow: Nauchnyi mir, 2013.

    Google Scholar 

  4. Solovchenko, A., Aflalo, C., Lukyanov, A., and Boussiba, S., Nondestructive monitoring of carotenogenesis in Haematococcus pluvialis via whole-cell optical density spectra, Appl. Microbiol. Biotechnol., 2013, vol. 97, pp. 4533–4541.

    Article  CAS  PubMed  Google Scholar 

  5. Solovchenko, A., Merzlyak, M., Khozin-Goldberg, I., Cohen, Z., and Boussiba, S., Coordinated carotenoid and lipid syntheses induced in Parietochloris incise (Chlorophyta, Trebouxiophyceae) mutant deficient in Δ5-desaturase by nitrogen starvation and high light, J. Phycol., 2010, vol. 46, pp. 763–772.

    Article  CAS  Google Scholar 

  6. Solovchenko, A., Khozin-Goldberg, I., Recht, L., and Boussiba, S., Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids, Mar. Biotechnol., 2011, vol. 13, pp. 527–535.

    Article  CAS  PubMed  Google Scholar 

  7. Duysens, L., The flattening of the absorption spectrum of suspensions, as compared to that of solutions, Biochim. Biophys. Acta, 1956, vol. 19, pp. 1–12.

    Article  CAS  PubMed  Google Scholar 

  8. Amesz, J., Duysens, L., and Brandt, D., Methods for measuring and correcting the absorption spectrum of scattering suspensions, J. Theor. Biol., 1961, vol. 1, pp. 59–74.

    Article  CAS  PubMed  Google Scholar 

  9. Latimer, P. and Eubanks, C., Absorption spectrophotometry of turbid suspensions: a method of correcting for large systematic deviations, Arch. Biochem. Biophys., 1962, vol. 98, pp. 274–285.

    Article  CAS  PubMed  Google Scholar 

  10. Morel, A. and Bricaud, A., Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep-Sea Research. Part A, Oceanographic Res. Papers, 1981, vol. 28, pp. 1375–1393.

    Article  Google Scholar 

  11. Bricaud, A., Bédhomme, A.-L., and Morel, A., Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation, J. Plankton Res., 1988, vol. 10, pp. 851–873.

    Article  CAS  Google Scholar 

  12. Morel, A., Optics of marine particles and marine optics, Particle Analysis in Oceanography, NATO ASI Ser., 1991, vol. 27, pp. 141–188.

    Article  Google Scholar 

  13. Merzlyak, M.N., Chivkunova, O.B., Maslova, I.P., Nakvi, K.R., Solovchenko, A.E., and Klyachko-Gurvich, G.L., Light absorption and scattering by cell suspensions of some cyanobacteria and microalgae, Russ. J. Plant Physiol., 2008, vol. 55, pp. 420–425.

    Article  CAS  Google Scholar 

  14. Merzlyak, M.N. and Naqvi, K.R., On recording the true absorption spectrum and the scattering spectrum of a turbid sample: application to cell suspensions of the cyanobacterium Anabaena variabilis, J. Photochem. Photobiol., B: Biol., 2000, vol. 58, pp. 123–129.

    Article  CAS  Google Scholar 

  15. Gitelson, A.A., Keydan, G.P., and Merzlyak, M.N., Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves, Geophys. Rev. Lett., 2006, vol. 33(L11402), doi 10.1029/2006GL026457

    Google Scholar 

  16. Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., Solovchenko, A.E., and Pogosyan, S.I., Application of reflectance spectroscopy for analysis of higher plant pigments, Russ. J. Plant Physiol., 2003, vol. 50, pp. 704–710.

    Article  CAS  Google Scholar 

  17. Chelebieva, E., Minyuk, G., Drobetskaya, I., and Chubchikova, I., Physiological and biochemical patterns of microalgae Ettlia carotinosa Komarek 1989 (Chlorophyceae) during experimental stress, Morsk. Ekol. Zhurn., 2013, vol. 12, pp. 78–87.

    Google Scholar 

  18. Han, D., Li, Y., and Hu, Q., Biology and commercial aspects of Haematococcus pluvialis, Handbook of Microalgal Culture: Applied Phycology and Biotechnology, Richmond, A. and Hu, Q, Eds., Oxford: Wiley-Blackwell, 2013, pp. 388–405.

    Chapter  Google Scholar 

  19. Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M., and Stanier, R.Y., Generic assignments, strain histories and properties of pure cultures of cyanobacteria, J. General Microbiol., 1979, vol. 111, pp. 1–61.

    Article  Google Scholar 

  20. Pal, D., Khozin-Goldberg, I., Cohen, Z., and Boussiba, S., The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp., Appl. Microbiol. Biotechnol., 2011, vol. 90, pp. 1429–1441.

    Article  CAS  PubMed  Google Scholar 

  21. Morel, A., Diffusion de la lumière par les eaux de mer. résultats expérimentaux et approche théorique, Optics Sea, AGARD Lect. Ser., 1973, vol. 61, pp. 3.1.1–3.1.76.

    Google Scholar 

  22. Naqvi, K.R., Merzlyak, M.N., and Mel_, T.B., Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations, Photochem. Photobiol. Sci., 2004, vol. 3, pp. 132–137.

    Article  CAS  PubMed  Google Scholar 

  23. Gladstone, J.H. and Dale, T., Researches on the refraction, dispersion, and sensitiveness of liquids, Phil. Trans. R. Soc. (London), 1863, vol. 153, pp. 317–543.

    Article  Google Scholar 

  24. Stramski, D., Refractive index of planktonic cells as a measure of cellular carbon and chlorophyll a content, Deep-Sea Res., part 1, Oceanographic Res. Papers, 1999, vol. 46, pp. 335–351.

    Article  CAS  Google Scholar 

  25. Aas, E., Refractive index of phytoplankton derived from its metabolite composition, J. Plankton Res., 1996, vol. 18, pp. 2223–2249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Solovchenko.

Additional information

Original Russian Text © K.A. Chekanov, A.E. Solovchenko, 2015, published in Fiziologiya Rastenii, 2015, Vol. 62, No. 2, pp. 291–300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekanov, K.A., Solovchenko, A.E. Possibilities and limitations of non-destructive monitoring of the unicellular green microalgae (Chlorophyta) in the course of balanced growth. Russ J Plant Physiol 62, 270–278 (2015). https://doi.org/10.1134/S1021443715010033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715010033

Keywords

Navigation