Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue


Low-light (LL) intensity is a primary abiotic stressor that negatively influences turf grass quality. In the present experiment, we studied the effect of exogenous Ca2+ (0, 10, 50, 100, and 200 mM) on the antioxidant system, the accumulation of MDA and proline, the content of photosynthetic pigments in plant leaves in order to investigate whether exogenous Ca2+ treatment improves LL tolerance in tall fescue (Festuca arundinacea Schreb.). We have found that LL significantly reduced a number of growth parameters (plant height, leaf width, leaf fresh weight, root fresh weight, leaf dry weight, and root dry weight), chlorophyll (Chl) a and Chl b contents, and carotenoid (Car) levels, while considerably enhancing electrolyte leakage (EL), MDA accumulation, calcium (Ca2+) concentration, and generation of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2) and superoxide radical (O ·−2 ). Moreover, LL significantly induced the activities of antioxidant enzymes, such as peroxidase (POD) and catalase (CAT), and slightly increased the activity of superoxide dismutase (SOD) in tall fescue leaves. In contrast, POD and SOD activities declined considerably while CAT activity significantly increased in plant roots under LL stress. The application of 50 mM Ca2+ significantly improved the aforementioned growth parameters, the content of photosynthetic pigments, and further enhanced the activities of POD, SOD, and CAT, but decreased electrolyte leakage and MDA and H2O2 levels in the leaves and roots of tall fescue under LL stress. These results suggest that Ca2+ is likely involved in a resistance to LL by regulating antioxidant enzyme action in tall fescue leaves and roots.

This is a preview of subscription content, access via your institution.









electrolyte leakage


leaf dry weight


leaf fresh weight




leaf width


nitro blue tetrazolium


plant height




photosynthetic photon flux density




root dry weight


root fresh weight


sodium nitroprusside


superoxide dismutase


  1. 1.

    Xu, Y.F., Chen, H., Zhou, H., Jin, J.W., and Hu, T.M., Acclimation of morphology and physiology in turf grass to low light environment: a review, Afr. J. Biotechnol., 2011, vol. 10, pp. 9737–9742.

    Article  Google Scholar 

  2. 2.

    Bell, G.E. and Danneberger, T.K., Temporal shade on creeping bentgrass turf, Crop Sci., 1999, vol. 39, pp. 1142–1146.

    Article  Google Scholar 

  3. 3.

    Braam, J., Regulated expression of the calmodulin-related TCH genes in cultured Arabidopsis cells: induction of calcium and heat shock, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 3213–3216.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  4. 4.

    Gilroy, S. and Trewavas, T., A decade of plant signals, BioEssays, 1994, vol. 16, pp. 677–682.

    Article  Google Scholar 

  5. 5.

    Boudsocq, M. and Sheen, J., Stress signaling. II: Calcium sensing and signaling, Abiotic Stress Adaptation in Plants, Pareek, A. Sopory, S.K., Bohnert, H.J., and Govindjee, Eds., Dordrecht: Springer, 2010, pp. 75–90.

    Google Scholar 

  6. 6.

    Jiang, Y.W. and Huang, B.R., Effects of calcium on antioxidant activities and water relations associated with heat tolerance in two cool-season grasses, J. Exp. Bot., 2001, vol. 52, pp. 341–349.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Hepler, P.K., Calcium: a central regulator of plant growth and development, Plant Cell, 2005, vol. 17, pp. 2142–2155.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  8. 8.

    Hirschi, K.D., The calcium conundrum. Both versatile nutrient and specific signal, Plant Physiol., 2004, vol. 136, pp. 2438–2442.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Al-Whaibi, M.H., Siddiqui, M.H., and Basalah, M.O., Salicylic acid and calcium-induce protection of wheat against salinity, Protoplasma, 2012, vol. 249, pp. 769–778.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ding, H.D., Zhang, H.J., Zhu, X.H., Liu, H., Liang, J.S., and Lu, B., Involvement of calcium and calmodulin signaling in adaptation to heat stress-induced oxidative stress in Solanum lycopersicum L. leaves, Afr. J. Biotechnol., 2012, vol. 11, pp. 3259–3269.

    CAS  Google Scholar 

  11. 11.

    Siddiqui, M.H., Al-Whaibi, M.H., Sakran, A.M., Basalah, M.O., and Ali, H.M., Effect of calcium and potassium on antioxidant system of Vicia faba L. under cadmium stress, Int. J. Mol. Sci., 2012, vol. 13, pp. 6604–6619.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12.

    Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  13. 13.

    Song, L., Ding, W., Zhao, M., Sun, B., and Zhang, L., Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed, Plant Sci., 2006, vol. 171, pp. 449–458.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Li, Y., Zhao, H., Duan, B., Korpelainen, H., and Li, C., Effect of drought and ABA on growth, photosynthesis and antioxidant system of Cotinus coggygria seedlings under two different light conditions, Environ. Exp. Bot., 2011, vol. 71, pp. 107–113.

    Article  CAS  Google Scholar 

  15. 15.

    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  16. 16.

    Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Upadhyaya, A., Sankhla, D., Davis, T.D., Sankhla, N., and Smith, B.N., Effect of paclobutrazol on the activities of some enzymes of activated oxygen metabolism and lipid peroxidation in senescing soybean leaves, J. Plant Physiol., 1985, vol. 121, pp. 453–461.

    Article  CAS  Google Scholar 

  19. 19.

    Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  Google Scholar 

  20. 20.

    Elstner, E.F. and Heupel, A., Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase, Anal. Biochem., 1976, vol. 70, pp. 616–620.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Veljovic-Jovanovic, S., Noctor, G., and Foyer, C.H., Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate, Plant Physiol. Biochem., 2002, vol. 40, pp. 501–507.

    Article  CAS  Google Scholar 

  22. 22.

    Reddy, M.P. and Vora, A.B., Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity, Photosynthetica, 1986, vol. 20, pp. 50–55.

    CAS  Google Scholar 

  23. 23.

    Pauly, N., Knight, M.R., Thuleau, P., Graziana, A., Muto, S., Ranjeva, R., and Mazars, C., The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells, Cell Calcium, 2001, vol. 30, pp. 413–421.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    White, P.J. and Broadley, M.R., Calcium in plants, Ann. Bot., 2003, vol. 92, pp. 487–511.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Monroy, A.F., Sarhan, F., and Dhindsa, R.S., Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium), Plant Physiol., 1993, vol. 102, pp. 1227–1235.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. 26.

    Gong, M. and Li, Z.G., Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermo-tolerance, Plant Physiol., 1998, vol. 116, pp. 429–437.

    Article  CAS  PubMed Central  Google Scholar 

  27. 27.

    Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, pp. 141–154.

    Article  CAS  Google Scholar 

  28. 28.

    Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Gong, M. and Li, Z.G., Calmodulin-binding proteins from Zea mays germs, Phytochemistry, 1995, vol. 40, pp. 1335–1339.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Y. F. Xu.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, W.Z., Fu, J.J., Yang, L.Y. et al. Protective effects of complementary Ca2+ on low-light-induced oxidative damage in tall fescue. Russ J Plant Physiol 61, 818–827 (2014).

Download citation


  • Festuca arundinacea
  • antioxidant enzymes
  • calcium
  • low-light
  • turf grass